Matplotlib 色彩圖標準化:視覺化非線性數據
介紹
在資料視覺化中,顏色圖用於透過顏色來表示數值資料。然而,有時數據分佈可能是非線性的,這使得難以辨別數據的細節。在這種情況下,色彩圖標準化可用於以非線性方式將色彩圖對應到資料上,以幫助更準確地視覺化資料。 Matplotlib 提供了多種標準化方法,包括 SymLogNorm 和 AsinhNorm,可用於標準化顏色圖。本實驗將示範如何使用 SymLogNorm 和 AsinhNorm 將色彩圖對應到非線性資料。
虛擬機器提示
虛擬機器啟動完成後,點選左上角切換到Notebook選項卡,造訪Jupyter Notebook進行練習。
有時,您可能需要等待幾秒鐘 Jupyter Notebook 才能完成載入。由於 Jupyter Notebook 的限制,操作驗證無法自動化。
如果您在學習過程中遇到問題,請隨時詢問Labby。會後回饋,我們會及時為您解決問題。
導入所需的庫
在這一步驟中,我們將匯入必要的函式庫,包括 Matplotlib、NumPy 和 Matplotlib 顏色。
import matplotlib.pyplot as plt import numpy as np import matplotlib.colors as colors
創建綜合數據
在此步驟中,我們將建立一個由兩個駝峰(一負一正)組成的合成資料集,其中正駝峰的幅度是負駝峰的八倍。然後我們將應用 SymLogNorm 來視覺化資料。
def rbf(x, y): return 1.0 / (1 + 5 * ((x ** 2) + (y ** 2))) N = 200 gain = 8 X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)] Z1 = rbf(X + 0.5, Y + 0.5) Z2 = rbf(X - 0.5, Y - 0.5) Z = gain * Z1 - Z2 shadeopts = {'cmap': 'PRGn', 'shading': 'gouraud'} colormap = 'PRGn' lnrwidth = 0.5
應用 SymLogNorm
在此步驟中,我們將 SymLogNorm 應用於合成資料並視覺化結果。
fig, ax = plt.subplots(2, 1, sharex=True, sharey=True) pcm = ax[0].pcolormesh(X, Y, Z, norm=colors.SymLogNorm(linthresh=lnrwidth, linscale=1, vmin=-gain, vmax=gain, base=10), **shadeopts) fig.colorbar(pcm, ax=ax[0], extend='both') ax[0].text(-2.5, 1.5, 'symlog') pcm = ax[1].pcolormesh(X, Y, Z, vmin=-gain, vmax=gain, **shadeopts) fig.colorbar(pcm, ax=ax[1], extend='both') ax[1].text(-2.5, 1.5, 'linear') plt.show()
應用AsinhNorm
在此步驟中,我們將 AsinhNorm 應用於合成資料並視覺化結果。
fig, ax = plt.subplots(2, 1, sharex=True, sharey=True) pcm = ax[0].pcolormesh(X, Y, Z, norm=colors.SymLogNorm(linthresh=lnrwidth, linscale=1, vmin=-gain, vmax=gain, base=10), **shadeopts) fig.colorbar(pcm, ax=ax[0], extend='both') ax[0].text(-2.5, 1.5, 'symlog') pcm = ax[1].pcolormesh(X, Y, Z, norm=colors.AsinhNorm(linear_width=lnrwidth, vmin=-gain, vmax=gain), **shadeopts) fig.colorbar(pcm, ax=ax[1], extend='both') ax[1].text(-2.5, 1.5, 'asinh') plt.show()
概括
在本實驗中,我們學習如何使用 SymLogNorm 和 AsinhNorm 將色彩圖對應到非線性資料。透過應用這些標準化方法,我們可以更準確地視覺化數據並更容易辨別數據的細節。
?立即練習:Matplotlib 顏色圖標準化
想了解更多嗎?
- ?學習最新的Python技能樹
- ?閱讀更多 Python 教程
- ?加入我們的 Discord 或推文@WeAreLabEx
以上是Matplotlib 色彩圖標準化:視覺化非線性數據的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。
