首頁 > 後端開發 > Python教學 > 建立一個簡單的圖查詢引擎

建立一個簡單的圖查詢引擎

WBOY
發布: 2024-08-21 22:47:39
原創
530 人瀏覽過

在過去的 2 篇部落格中,我們了解如何安裝 neo4j 並將資料載入其中。在這篇部落格中,我們將了解如何建立一個簡單的圖形查詢引擎來回答我們的問題,但從 Neo4j 檢索資料。

Building A Simple Graph Query Engine

第 1 步:建立 CYPHER 查詢

  • 要建立密碼查詢,我們需要向 GPT 提供架構資訊、屬性資訊以及我們的問題。使用此元資料 GPT 將為我們提供查詢。

  • 我已經建立了提示,為每個使用者輸入回傳 3 個查詢

  1. 正規表示式 - 此查詢將具有正規表示式模式來符合 graphDB 中的資料
  2. 編輯相似度 - 此查詢將使用閾值分數大於 0.5 的編輯相似度來匹配並從圖形資料庫中獲取資料。
  3. 基於嵌入的匹配 - 我們已經將嵌入推送到我們的資料庫中,因此此查詢將使用使用者查詢的嵌入,並使用餘弦相似度的分數重新排序完整列表。也許這也可以改進以返回前 5 名。
class GraphQueryEngine:
    def __init__(self):
        self.client = OpenAI(api_key="")
        self.url = "bolt://localhost:7687"
        self.auth = ("neo4j", "neo4j@123")

    def get_response(self, user_input):
        """Used to get cypher queries from user input"""
        completion = self.client.beta.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system",
                 "content": "You are an expert in generating Cypher queries for a Neo4j database. Your task is to understand the input and generate only Cypher read queries. Do not return anything other than the Cypher queries, as the returned result will be executed directly in the database."},
                {"role": "user",
                 "content": f"""
                 Schema Information:
                 NODES: Product_type - Contains the distinct types of products such as headphones/mobiles/laptops/washing machines, Product_details - Contains products within a product_type for example apple, samsung within mobiles, DELL within laptops 
                 NODE PROPERTIES: In node Product_type there are name(name of the product type - String), embedding(embedding of the name), and in node Product_details there are name(name of the product - string), price(price of the product - integer), description(description of the product), product_release_date(when product was release on - date), available_stock(stock left - integer), review_rating(product review - float) 
                 DIRECTION OF RELATIONSHIPS: Node Product_type is connected to node Product_details using relationship CONTAINS

                 Based on the schema, generate three read-only Cypher queries related to Product_type (e.g., chairs, headphones, fridge) or Product_details (e.g., name, description) or combination of both. Ensure that product category uses Product_type and product name/ price 

                 Query 1: Use regular expressions (avoid 'contains') - Exclude the 'embedding' property from the result.
                 Query 2: Use `apoc.text.levenshteinSimilarity > 0.5` - Exclude the 'embedding' property from the result.
                 Query 3: Use `gds.similarity.cosine()` to reorder nodes based on similarity scores. The query must include a `%s` placeholder for embedding input but exclude the 'embedding' property in the result.

                 Generate targeted queries using relationships only when necessary. The embedding property should only be used in the logic and must not appear in the query results.

                 Strictly return only the Cypher queries with no embeddings. The returned result will be executed directly in the database.

                 {user_input}
                 """},
            ],
        )

        response = completion.choices[0].message.content

        completion = self.client.beta.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system",
                 "content": "You are an expert in parsing generating Cypher queries."},
                {"role": "user",
                 "content": f"""Use this input - {response} and parse and return only the cypher queries from the input, ensure that in the cypher query if it returns embeddings then remove the embeddings alone from the query"""},
            ],
            response_format=CypherQuery,
        )
        event = completion.choices[0].message.parsed
        cypher_queries = event.cypher_queries
        print("################################## CYPHER QUERIES ######################################")
        for query in cypher_queries:
            print(query)
        return cypher_queries
登入後複製

 

第 2 步 - 在第三個查詢中填入嵌入

  • 第三個查詢使用 gds.similarity.cosine() 因此我們將使用者查詢轉換為嵌入並將其填入第三個查詢中
    def populate_embedding_in_query(self, user_input, cypher_queries):
        """Used to add embeddings of the user input in the 3rd query"""
        model = "text-embedding-3-small"
        user_input = user_input.replace("\n", " ")
        embeddings = self.client.embeddings.create(input=[user_input], model=model).data[0].embedding
        cypher_queries[2] = cypher_queries[2] % embeddings
        return cypher_queries
登入後複製

 

第 3 步 - 查詢資料庫

  • 使用準備好的密碼查詢查詢資料庫
    def execute_read_query(self, query):
        """Execute the cypher query"""
        results = []

        with GraphDatabase.driver(self.url, auth=self.auth) as driver:
            with driver.session() as session:
                try:
                    result = session.run(query)
                    # Collect the result from the read query
                    records = [record.data() for record in result]
                    if records:
                        results.append(records)
                except Exception as error:
                    print(f"Error in executing query")

        return results

    def fetch_data(self, cypher_queries):
        """Return the fetched data from DB post formatting"""
        results = None
        for idx in range(len(cypher_queries)):
            try:
                results = self.execute_read_query(cypher_queries[idx])
                if results:
                    if idx == len(cypher_queries) - 1:
                        results = results[0][:10]
                    break
            except Exception:
                pass
        return results
登入後複製

 

第 4 步 - 增強世代

  • 使用取得的資料命中GPT,使用增強生成技術,借助增強資訊產生使用者查詢的回應
    def get_final_response(self, user_input, fetched_data):
        """Augumented generation using data fetched from DB"""
        completion = self.client.beta.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system",
                 "content": "You are a chatbot for an ecommerce website, you help users to identify their desired products"},
                {"role": "user", "content": f"""User query - {user_input}
                Use the below metadata to answer my query
                {fetched_data}     
            """},
            ],
        )

        response = completion.choices[0].message.content
        return response
登入後複製

 

完整程式碼

from openai import OpenAI
from pydantic import BaseModel
from typing import List
from neo4j import GraphDatabase


class CypherQuery(BaseModel):
    cypher_queries: List[str]


class GraphQueryEngine:
    def __init__(self):
        self.client = OpenAI(api_key="")
        self.url = "bolt://localhost:7687"
        self.auth = ("neo4j", "neo4j@123")

    def populate_embedding_in_query(self, user_input, cypher_queries):
        """Used to add embeddings of the user input in the 3rd query"""
        model = "text-embedding-3-small"
        user_input = user_input.replace("\n", " ")
        embeddings = self.client.embeddings.create(input=[user_input], model=model).data[0].embedding
        cypher_queries[2] = cypher_queries[2] % embeddings
        return cypher_queries

    def execute_read_query(self, query):
        """Execute the cypher query"""
        results = []

        with GraphDatabase.driver(self.url, auth=self.auth) as driver:
            with driver.session() as session:
                try:
                    result = session.run(query)
                    # Collect the result from the read query
                    records = [record.data() for record in result]
                    if records:
                        results.append(records)
                except Exception as error:
                    print(f"Error in executing query")

        return results

    def get_response(self, user_input):
        """Used to get cypher queries from user input"""
        completion = self.client.beta.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system",
                 "content": "You are an expert in generating Cypher queries for a Neo4j database. Your task is to understand the input and generate only Cypher read queries. Do not return anything other than the Cypher queries, as the returned result will be executed directly in the database."},
                {"role": "user",
                 "content": f"""
                 Schema Information:
                 NODES: Product_type - Contains the distinct types of products such as headphones/mobiles/laptops/washing machines, Product_details - Contains products within a product_type for example apple, samsung within mobiles, DELL within laptops 
                 NODE PROPERTIES: In node Product_type there are name(name of the product type - String), embedding(embedding of the name), and in node Product_details there are name(name of the product - string), price(price of the product - integer), description(description of the product), product_release_date(when product was release on - date), available_stock(stock left - integer), review_rating(product review - float) 
                 DIRECTION OF RELATIONSHIPS: Node Product_type is connected to node Product_details using relationship CONTAINS

                 Based on the schema, generate three read-only Cypher queries related to Product_type (e.g., chairs, headphones, fridge) or Product_details (e.g., name, description) or combination of both. Ensure that product category uses Product_type and product name/ price 

                 Query 1: Use regular expressions (avoid 'contains') - Exclude the 'embedding' property from the result.
                 Query 2: Use `apoc.text.levenshteinSimilarity > 0.5` - Exclude the 'embedding' property from the result.
                 Query 3: Use `gds.similarity.cosine()` to reorder nodes based on similarity scores. The query must include a `%s` placeholder for embedding input but exclude the 'embedding' property in the result.

                 Generate targeted queries using relationships only when necessary. The embedding property should only be used in the logic and must not appear in the query results.

                 Strictly return only the Cypher queries with no embeddings. The returned result will be executed directly in the database.

                 {user_input}
                 """},
            ],
        )

        response = completion.choices[0].message.content

        completion = self.client.beta.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system",
                 "content": "You are an expert in parsing generating Cypher queries."},
                {"role": "user",
                 "content": f"""Use this input - {response} and parse and return only the cypher queries from the input, ensure that in the cypher query if it returns embeddings then remove the embeddings alone from the query"""},
            ],
            response_format=CypherQuery,
        )
        event = completion.choices[0].message.parsed
        cypher_queries = event.cypher_queries
        print("################################## CYPHER QUERIES ######################################")
        for query in cypher_queries:
            print(query)
        return cypher_queries

    def get_final_response(self, user_input, fetched_data):
        """Augumented generation using data fetched from DB"""
        completion = self.client.beta.chat.completions.parse(
            model="gpt-4o-2024-08-06",
            messages=[
                {"role": "system",
                 "content": "You are a chatbot for an ecommerce website, you help users to identify their desired products"},
                {"role": "user", "content": f"""User query - {user_input}
                Use the below metadata to answer my query
                {fetched_data}     
            """},
            ],
        )

        response = completion.choices[0].message.content
        return response

    def fetch_data(self, cypher_queries):
        """Return the fetched data from DB post formatting"""
        results = None
        for idx in range(len(cypher_queries)):
            try:
                results = self.execute_read_query(cypher_queries[idx])
                if results:
                    if idx == len(cypher_queries) - 1:
                        results = results[0][:10]
                    break
            except Exception:
                pass
        return results
登入後複製

 

讓我們嘗試一下

user_input = input("Enter your question : ")
query_engine = GraphQueryEngine()
cypher_queries = query_engine.get_response(user_input)
cypher_queries = query_engine.populate_embedding_in_query(user_input, cypher_queries)
fetched_data = query_engine.fetch_data(cypher_queries)
response = query_engine.get_final_response(user_input, fetched_data)
登入後複製

 

輸出

Building A Simple Graph Query Engine

Building A Simple Graph Query Engine

在下一篇部落格中,我們將建立一個簡單的 FastAPI 應用程序,將此設定公開為 API。

 
希望有幫助...!!!

 
LinkedIn - https://www.linkedin.com/in/praveenr2998/
Github - https://github.com/praveenr2998/Creating-Lightweight-RAG-Systems-With-Graphs/blob/main/fastapi_app/query_engine.py

以上是建立一個簡單的圖查詢引擎的詳細內容。更多資訊請關注PHP中文網其他相關文章!

來源:dev.to
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板