首頁 Java java教程 用 Java 建構智慧 AI 應用

用 Java 建構智慧 AI 應用

Aug 30, 2024 am 06:02 AM

Building Smart AI Apps in Java

人工智慧 (AI) 已成為現代軟體開發的重要組成部分,為數據分析、自動化和機器學習等領域的應用程式提供動力。儘管有許多適用於 Python 等語言的 AI 框架和函式庫,但 Java 仍然是一種強大的多功能語言,可用於創建強大的、可擴展的 AI 應用程式。在本部落格中,我們將透過實作範例和逐步指南來探索如何使用 Java 建立 AI 應用程式。

為什麼要使用Java進行人工智慧開發?

雖然 Python 因其簡單性和強大的函式庫而在人工智慧領域佔據主導地位,但 Java 具有以下幾個優勢:

  • 效能:Java 應用程式以其效能和可擴展性而聞名,這使其成為大規模 AI 應用程式的理想選擇。
  • 廣泛採用:許多企業使用Java,現有系統經常需要AI整合。
  • 跨平台:Java 的平台無關性使得可以輕鬆地在不同系統上運行 AI 模型。
  • 豐富的生態系:Java 擁有豐富的 AI 函式庫,包括 Deeplearning4j、Weka 和 Apache Mahout。

讓我們深入了解如何使用 Java 實作 AI 解決方案,並專注於機器學習和神經網路。


為 AI 設定 Java

要使用 Java 建立 AI 應用程序,您需要使用適當的程式庫設定開發環境。一些流行的庫包括:

  • Deeplearning4j (DL4J):一個受歡迎的開源分散式 Java 深度學習函式庫。
  • Weka:用於資料探勘的機器學習演算法的集合。
  • Apache Mahout:用於叢集、分類和協作過濾的可擴展機器學習庫。

在本教程中,我們將重點放在 Deeplearning4j,因為它具有強大的深度學習功能並且在 Java 中易於使用。

安裝 Deeplearning4j

要安裝 Deeplearning4j,您首先需要在您最喜歡的整合開發環境 (IDE)(如 IntelliJ IDEA 或 Eclipse)中設定新的 Maven 專案。

  1. 建立 Maven 專案:開啟 IntelliJ IDEA(或其他 IDE),建立一個新的 Maven 項目,並將其命名為 JavaAIExample。

  2. 新增依賴:開啟專案中的pom.xml文件,為Deeplearning4j和ND4J(Java數值計算庫)新增以下依賴:

<dependencies>
    <dependency>
        <groupId>org.deeplearning4j</groupId>
        <artifactId>deeplearning4j-core</artifactId>
        <version>1.0.0-beta7</version>
    </dependency>
    <dependency>
        <groupId>org.nd4j</groupId>
        <artifactId>nd4j-native-platform</artifactId>
        <version>1.0.0-beta7</version>
    </dependency>
</dependencies>
登入後複製

一旦這些依賴項就位,Maven 將下載 Deeplearning4j 所需的函式庫。


用 Java 建立簡單的 AI 模型

讓我們逐步了解如何使用 Deeplearning4j 建立一個簡單的神經網路。我們將建立一個基本模型來對 MNIST 資料集中的手寫數字進行分類。

第 1 步:載入數據

Deeplearning4j 提供了載入 MNIST 資料集的內建支援。以下是將其載入到您的專案中的方法:

import org.deeplearning4j.datasets.iterator.impl.MnistDataSetIterator;
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;

public class MnistExample {
    public static void main(String[] args) throws Exception {
        int batchSize = 128;
        int outputClasses = 10;
        DataSetIterator mnistTrain = new MnistDataSetIterator(batchSize, true, 12345);
        DataSetIterator mnistTest = new MnistDataSetIterator(batchSize, false, 12345);
    }
}
登入後複製

第 2 步:定義神經網路配置

接下來,我們將建立一個具有一個隱藏層的基本神經網路。您可以根據您的要求自訂層數和神經元數量。

import org.deeplearning4j.nn.conf.MultiLayerConfiguration;
import org.deeplearning4j.nn.conf.NeuralNetConfiguration;
import org.deeplearning4j.nn.conf.layers.DenseLayer;
import org.deeplearning4j.nn.conf.layers.OutputLayer;
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork;
import org.deeplearning4j.optimize.listeners.ScoreIterationListener;
import org.nd4j.linalg.activations.Activation;
import org.nd4j.linalg.learning.config.Adam;
import org.nd4j.linalg.lossfunctions.LossFunctions;

public class MnistExample {
    public static void main(String[] args) throws Exception {
        // Configuration of the neural network
        MultiLayerConfiguration config = new NeuralNetConfiguration.Builder()
                .seed(123)
                .updater(new Adam(0.001))
                .list()
                .layer(new DenseLayer.Builder()
                        .nIn(28 * 28)  // Input layer size (28x28 pixels)
                        .nOut(1000)    // Number of neurons in the hidden layer
                        .activation(Activation.RELU)
                        .build())
                .layer(new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
                        .nIn(1000)
                        .nOut(10)      // 10 output classes (digits 0-9)
                        .activation(Activation.SOFTMAX)
                        .build())
                .build();

        MultiLayerNetwork model = new MultiLayerNetwork(config);
        model.init();
        model.setListeners(new ScoreIterationListener(10)); // Output score every 10 iterations
    }
}
登入後複製

第 3 步:訓練模型

現在,我們將使用 MNIST 訓練資料集來訓練模型並評估其效能。

import org.nd4j.linalg.dataset.api.iterator.DataSetIterator;
import org.nd4j.linalg.dataset.api.DataSet;
import org.deeplearning4j.eval.Evaluation;

public class MnistExample {
    public static void main(String[] args) throws Exception {
        // (Setup code here)

        // Training the model
        for (int i = 0; i < 10; i++) {
            model.fit(mnistTrain);
        }

        // Evaluate the model
        Evaluation eval = new Evaluation(10); // 10 classes for digits
        while (mnistTest.hasNext()) {
            DataSet next = mnistTest.next();
            INDArray output = model.output(next.getFeatures());
            eval.eval(next.getLabels(), output);
        }

        System.out.println(eval.stats());
    }
}
登入後複製

第 4 步:運行模型

編譯並執行您的 Java 應用程式。訓練完成後,控制台會顯示評估指標,包括準確度和精確度。


結論

用 Java 創建人工智慧應用程式可能不像用 Python 那樣流行,但它為企業級、可擴展的人工智慧系統提供了顯著的優勢。在本教程中,我們示範如何使用 Deeplearning4j 設定用於 AI 開發的 Java 環境、載入資料、配置神經網路以及訓練和評估模型。

Java 的效能與 Deeplearning4j 等程式庫結合,使開發人員能夠將 AI 無縫整合到他們的系統中。無論您是在開發即時應用程式還是大規模資料驅動的解決方案,Java 仍然是建立 AI 系統的強大選擇。


延伸閱讀:

  • Deeplearning4j 文件
  • Java 機器學習庫 (Java-ML)
  • 阿帕契 Mahout

使用 Java,您可以使用工具和程式庫將 AI 的強大功能帶入您的應用程式。快樂編碼!

以上是用 Java 建構智慧 AI 應用的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

公司安全軟件導致應用無法運行?如何排查和解決? 公司安全軟件導致應用無法運行?如何排查和解決? Apr 19, 2025 pm 04:51 PM

公司安全軟件導致部分應用無法正常運行的排查與解決方法許多公司為了保障內部網絡安全,會部署安全軟件。 ...

如何使用MapStruct簡化系統對接中的字段映射問題? 如何使用MapStruct簡化系統對接中的字段映射問題? Apr 19, 2025 pm 06:21 PM

系統對接中的字段映射處理在進行系統對接時,常常會遇到一個棘手的問題:如何將A系統的接口字段有效地映�...

如何優雅地獲取實體類變量名構建數據庫查詢條件? 如何優雅地獲取實體類變量名構建數據庫查詢條件? Apr 19, 2025 pm 11:42 PM

在使用MyBatis-Plus或其他ORM框架進行數據庫操作時,經常需要根據實體類的屬性名構造查詢條件。如果每次都手動...

如何將姓名轉換為數字以實現排序並保持群組中的一致性? 如何將姓名轉換為數字以實現排序並保持群組中的一致性? Apr 19, 2025 pm 11:30 PM

將姓名轉換為數字以實現排序的解決方案在許多應用場景中,用戶可能需要在群組中進行排序,尤其是在一個用...

IntelliJ IDEA是如何在不輸出日誌的情況下識別Spring Boot項目的端口號的? IntelliJ IDEA是如何在不輸出日誌的情況下識別Spring Boot項目的端口號的? Apr 19, 2025 pm 11:45 PM

在使用IntelliJIDEAUltimate版本啟動Spring...

Java對像如何安全地轉換為數組? Java對像如何安全地轉換為數組? Apr 19, 2025 pm 11:33 PM

Java對象與數組的轉換:深入探討強制類型轉換的風險與正確方法很多Java初學者會遇到將一個對象轉換成數組的�...

電商平台SKU和SPU數據庫設計:如何兼顧用戶自定義屬性和無屬性商品? 電商平台SKU和SPU數據庫設計:如何兼顧用戶自定義屬性和無屬性商品? Apr 19, 2025 pm 11:27 PM

電商平台SKU和SPU表設計詳解本文將探討電商平台中SKU和SPU的數據庫設計問題,特別是如何處理用戶自定義銷售屬...

使用TKMyBatis進行數據庫查詢時,如何優雅地獲取實體類變量名構建查詢條件? 使用TKMyBatis進行數據庫查詢時,如何優雅地獲取實體類變量名構建查詢條件? Apr 19, 2025 pm 09:51 PM

在使用TKMyBatis進行數據庫查詢時,如何優雅地獲取實體類變量名以構建查詢條件,是一個常見的難題。本文將針...

See all articles