AIxiv專欄是本站發布學術、技術內容的欄位。過去數年,本站AIxiv專欄接收通報了2,000多篇內容,涵蓋全球各大專院校與企業的頂尖實驗室,有效促進了學術交流與傳播。如果您有優秀的工作想要分享,歡迎投稿或聯絡報道。投稿信箱:liyazhou@jiqizhixin.com;zhaoyunfeng@jiqizhixin.com
研究動機
研究動機為了獲得最佳的訓練數據,研究團隊的關鍵思路是學習一個明確包含物品轉移模式的新數據集。具體來說,他們將推薦系統的建模過程分為兩個階段:從原始資料集中提取轉移模式 ,並基於 學習使用者偏好。由於學習從 的映射涉及兩個隱含的映射: ,因此這個過程具有挑戰性。為此,研究團隊探索了開發一個明確表示中的物品轉移模式的資料集的可能性,這使得我們可以將學習過程明確地分為兩個階段,其中 相對更容易學習。因此,他們的主要關注點是學習一個有效的的映射函數,這是一個一對多的映射。研究團隊將這個學習過程定義為資料集重生成範式,如圖 1 所示,其中 「重生成」 意味著他們不引入任何額外信息,僅依賴原始資料集。 中下時 生成,研究團隊提出了一種新穎的以數據為中心的範式- 用於序列推薦的資料集重生成(DR4SR),旨在將原始資料集重生成一個資訊豐富且具有通用性的資料集。具體來說,研究團隊首先建立了一個預訓練任務,使得資料集重生成成為可能。接著,他們提出了一種多樣性增強的重生成器,以在重生成過程中建模序列和模式之間的一對多關係。最後,他們提出了一種混合推理策略,以在探索與利用之間取得平衡,產生新的資料集。以上是KDD2024最佳學生論文解讀,中科大、華為諾亞:序列推薦新典範DR4SR的詳細內容。更多資訊請關注PHP中文網其他相關文章!