首頁 後端開發 Python教學 如何在 Python 中使用 FaceNet 建構人臉辨識系統

如何在 Python 中使用 FaceNet 建構人臉辨識系統

Sep 04, 2024 pm 06:32 PM

How to Build a Face Recognition System Using FaceNet in Python

人臉辨識技術在從安全系統到社群媒體的各種應用中變得越來越普遍。對於此任務最有效的模型之一是 FaceNet,這是一種專為人臉驗證、識別和聚類而設計的深度學習模型。

在本教學中,我將向您展示如何使用 FaceNet 在 Python 中建立人臉辨識系統。我們將涵蓋從加載模型到比較面部的所有內容。閱讀本指南後,您將為在自己的專案中實現人臉辨識奠定堅實的基礎。

什麼是FaceNet?

FaceNet 是 Google 開發的深度學習模型,可將人臉映射到 128 維歐幾里德空間。這些嵌入代表了臉部的基本特徵,可以輕鬆地以高精度比較和識別臉部。與傳統的人臉辨識方法不同,FaceNet 專注於嵌入學習,這使得它非常有效且可擴展。

先決條件

在深入研究程式碼之前,請確保您已安裝以下軟體:

  • Python 3.x
  • TensorFlow 或 Keras(用於深度學習模型)
  • NumPy(用於數值運算)
  • OpenCV(用於影像處理)
  • Scikit-learn(用於應用最近鄰搜尋)

您可以使用 pip 安裝這些依賴項:

pip install tensorflow numpy opencv-python scikit-learn
登入後複製

第 1 步:載入預先訓練的 FaceNet 模型

首先,我們將載入預先訓練的 FaceNet 模型。您可以從可信任來源下載模型,也可以使用 keras-facenet 函式庫提供的模型。

from keras.models import load_model

# Load the pre-trained FaceNet model
model = load_model('facenet_keras.h5')
print("Model Loaded Successfully")
登入後複製

載入模型是設定我們的人臉辨識系統的第一步。該模型將用於生成圖像的嵌入,這是面部的數位表示。

第 2 步:為 FaceNet 預處理影像

FaceNet 期望輸入影像為 RGB 格式的 160x160 像素。此外,像素值在輸入模型之前需要進行標準化。

import cv2
import numpy as np

def preprocess_image(image_path):
    # Load the image using OpenCV
    img = cv2.imread(image_path)

    # Convert the image to RGB (FaceNet expects RGB images)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

    # Resize the image to 160x160 pixels
    img = cv2.resize(img, (160, 160))

    # Normalize the pixel values
    img = img.astype('float32') / 255.0

    # Expand dimensions to match the input shape of FaceNet (1, 160, 160, 3)
    img = np.expand_dims(img, axis=0)

    return img
登入後複製

此函數處理 FaceNet 所需的影像預處理。它將影像轉換為適當的格式和大小,確保模型接收到可以有效使用的輸入。

第 3 步:產生人臉嵌入

接下來,我們將使用 FaceNet 模型從預處理影像產生嵌入。這些嵌入將作為臉部的獨特數字表示。

def get_face_embedding(model, image_path):
    # Preprocess the image
    img = preprocess_image(image_path)

    # Generate the embedding
    embedding = model.predict(img)

    return embedding
登入後複製

get_face_embedding 函數接收模型和影像路徑,處理影像並傳回嵌入。我們將使用此嵌入來進行面部比較。

第 4 步:使用嵌入比較人臉

為了確定兩個面孔是否匹配,我們透過計算它們之間的歐幾里德距離來比較它們的嵌入。如果距離低於某個閾值,則認為臉孔匹配。

from numpy import linalg as LA

def compare_faces(embedding1, embedding2, threshold=0.5):
    # Compute the Euclidean distance between the embeddings
    distance = LA.norm(embedding1 - embedding2)

    # Compare the distance to the threshold
    if distance < threshold:
        print("Face Matched.")
    else:
        print("Faces are different.")

    return distance
登入後複製

compare_faces 函數計算兩個嵌入之間的距離。如果該距離小於指定閾值(預設為 0.5),則函數將列印「Face Matched」。否則,它會列印“面孔不同。”

第5步:測試人臉辨識系統

最後,讓我們用兩張圖像來測試我們的人臉辨識系統,看看它是否正確地將它們識別為同一個人。

# Load the FaceNet model
model = load_model('facenet_keras.h5')

# Get embeddings for two images
embedding1 = get_face_embedding(model, 'face1.jpg')
embedding2 = get_face_embedding(model, 'face2.jpg')

# Compare the two faces
distance = compare_faces(embedding1, embedding2)

print(f"Euclidean Distance: {distance}")
登入後複製

輸出

  • 如果面孔匹配,您將看到:面孔匹配。
  • 如果它們不匹配,您會看到:面孔不同。

此外,還將印製兩個嵌入之間的歐幾里德距離。

結論

您剛剛使用 Python 中的 FaceNet 建立了一個簡單但功能強大的人臉辨識系統。該系統可以輕鬆擴展以包含更多面孔、處理即時識別或整合到更大的專案中。 FaceNet 的高精度和高效率使其成為人臉辨識任務的絕佳選擇。

隨意嘗試閾值,或嘗試在即時應用程式中使用該系統,例如基於網路攝影機的人臉辨識工具。

如果您有任何疑問或需要進一步協助,請在下面發表評論。快樂編碼!


以上是如何在 Python 中使用 FaceNet 建構人臉辨識系統的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

如何解決Linux終端中查看Python版本時遇到的權限問題? 如何解決Linux終端中查看Python版本時遇到的權限問題? Apr 01, 2025 pm 05:09 PM

Linux終端中查看Python版本時遇到權限問題的解決方法當你在Linux終端中嘗試查看Python的版本時,輸入python...

如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到? 如何在使用 Fiddler Everywhere 進行中間人讀取時避免被瀏覽器檢測到? Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere進行中間人讀取時如何避免被檢測到當你使用FiddlerEverywhere...

在Python中如何高效地將一個DataFrame的整列複製到另一個結構不同的DataFrame中? 在Python中如何高效地將一個DataFrame的整列複製到另一個結構不同的DataFrame中? Apr 01, 2025 pm 11:15 PM

在使用Python的pandas庫時,如何在兩個結構不同的DataFrame之間進行整列複製是一個常見的問題。假設我們有兩個Dat...

Uvicorn是如何在沒有serve_forever()的情況下持續監聽HTTP請求的? Uvicorn是如何在沒有serve_forever()的情況下持續監聽HTTP請求的? Apr 01, 2025 pm 10:51 PM

Uvicorn是如何持續監聽HTTP請求的? Uvicorn是一個基於ASGI的輕量級Web服務器,其核心功能之一便是監聽HTTP請求並進�...

如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎? 如何在10小時內通過項目和問題驅動的方式教計算機小白編程基礎? Apr 02, 2025 am 07:18 AM

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...

在Linux終端中使用python --version命令時如何解決權限問題? 在Linux終端中使用python --version命令時如何解決權限問題? Apr 02, 2025 am 06:36 AM

Linux終端中使用python...

如何繞過Investing.com的反爬蟲機制獲取新聞數據? 如何繞過Investing.com的反爬蟲機制獲取新聞數據? Apr 02, 2025 am 07:03 AM

攻克Investing.com的反爬蟲策略許多人嘗試爬取Investing.com(https://cn.investing.com/news/latest-news)的新聞數據時,常常�...

See all articles