機器學習是電腦科學的一個領域,它使用靜態技術賦予電腦系統「學習」的能力,有數據,沒有數據 被明確編程。
這意味著,「機器學習就是從資料中學習」
明確程式設計意味著,為每個場景編寫程式碼,以處理該情況。
在機器學習中,我們不是為每個場景編寫顯式程式碼,而是訓練模型來從資料中學習模式,允許它們做出預測或針對未見過的情況所做的決定。
因此,我們給出輸入和輸出,但不要為每種情況編寫任何程式碼。機器學習演算法自動處理它們。
一個簡單的例子可以使用:
求和函數:
在明確程式設計中,要新增 2 個數字,我們編寫僅適用於該情況的特定程式碼。如果不加修改,此程式碼將無法用於新增 5 或 N 個數字。
相較之下,透過機器學習,我們可以提供一個 Excel 文件,其中每行包含不同的數字及其總和。當機器學習演算法在此資料集上進行訓練時,它會學習加法模式。將來,當給定 2、10 或 N 個數字時,它可以根據學習到的模式執行加法,而不需要針對每個場景編寫特定程式碼。
我們在哪裡使用機器學習?
在明確程式設計中,我編寫了多個if-else 條件,例如:「如果某個關鍵字出現3 次或以上,則會被標記為垃圾郵件。」例如,如果「Huge」一詞使用3 次,則會被標記為垃圾郵件。
現在,想像一家廣告公司意識到有這樣的演算法可以偵測他們的垃圾郵件。因此,他們不會重複「巨大」3次,而是使用「巨大」、「大規模」和「大」等同義詞。在這種情況下,原來的規則就不起作用了。解決方法是什麼?我應該再次改變我以前的演算法嗎?我能做到幾次?
在機器學習中,模型從提供的資料中學習並根據該資料自動建立演算法。如果資料發生變化,演算法會相應調整。無需手動更改演算法,它會根據新數據根據需要自行更新。
在用於影像分類的明確程式設計中,我們需要手動編寫規則來識別狗的特徵,例如它的形狀、大小、毛皮顏色或尾巴。這些規則僅適用於特定圖像,並不能很好地推廣到所有狗品種。如果我們遇到新品種或變種,我們需要為每個品種添加新規則。
在ML中,我們沒有編寫特定的規則,而是為模型提供了按品種標記的狗圖像的大型資料集。然後,該模型從數據中學習模式,例如不同品種的共同特徵,並使用學到的知識對新的狗圖像進行分類,即使它以前從未見過這些確切的品種。該演算法自動適應數據的變化。
此外,機器學習有數千種用途。你可能想知道,
為什麼機器學習在 2010 年之前沒有那麼流行?
如今,我們每天都會產生數百萬個數據點。利用如此大量的數據,機器學習模型現在變得更加準確、高效,並且能夠解決複雜的問題。他們可以學習模式、做出預測並自動執行醫療保健、金融和技術等各個領域的任務,從而改善決策並推動創新。
感謝您花時間閱讀本文。
以上是機器學習簡介的詳細內容。更多資訊請關注PHP中文網其他相關文章!