首頁 > web前端 > js教程 > 前端刷新專案—電子蜘蛛

前端刷新專案—電子蜘蛛

DDD
發布: 2024-09-19 03:20:02
原創
560 人瀏覽過

前言:學習了JavaScript之後,你可以使用JavaScript來實現一些有趣的效果。本文介紹如何純粹使用 JavaScript 在網頁上實現電子蜘蛛。

在開始學習如何寫網路蜘蛛之前,我們先來看看這個電子蜘蛛長什麼樣子:

Frontend Refresh Project - An Electronic Spider

可以看到它會隨著我們的滑鼠移動,那麼如何實現這個效果呢?讓我們開始解釋吧。

HTML 程式碼

<!DOCTYPE html>
<html lang="en">

<head>
    <meta charset="UTF-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Dreaming</title>
    <!-- External JavaScript files -->
    <script src=".test.js"></script>
    <style>
        /* Remove default padding and margins from body */
        body {
            margin: 0px;
            padding: 0px;
            position: fixed;
            /* Set the background color of webpage to black */
            background: rgb(0, 0, 0);
        }
    </style>
</head>

<body>
    <!-- Create a canvas for drawing -->
    <canvas id="canvas"></canvas>
</body>

</html>
登入後複製

如您所見,我們的 HTML 程式碼非常簡單,讓我們開始吧!

在開始編寫 JavaScript 程式碼之前,先制定一個計畫:

整體流程

  • 頁面載入時,畫布元素和繪圖上下文將被初始化。

  • 定義觸手物件。每根觸手由多個部分組成。

  • 監聽滑鼠移動事件並即時更新滑鼠位置。

  • 觸手透過動畫循環繪製,並根據滑鼠的位置動態變化,創造出流暢的動畫效果。

大致的流程就是上面的步驟,不過相信在你完成這段程式碼的編寫之前,你可能還不太理解上面的流程,不過沒關係,下面我們就開始寫我們的網路蜘蛛:

前言:為了幫助大家更好的理解程式碼邏輯,我為每段程式碼都加入了註解。希望您能在註解的幫助下一點點理解程式碼:

JavaScript 程式碼

// Define requestAnimFrame function
window.requestAnimFrame = function () {
    // Check if the browser supports requestAnimFrame function
    return (
        window.requestAnimationFrame ||
        window.webkitRequestAnimationFrame ||
        window.mozRequestAnimationFrame ||
        window.oRequestAnimationFrame ||
        window.msRequestAnimationFrame ||
        // If all these options are unavailable, use setTimeout to call the callback function
        function (callback) {
            window.setTimeout(callback)
        }
    )
}

// Initialization function to get canvas element and return related information
function init(elemid) {
    // Get canvas element
    let canvas = document.getElementById(elemid)
    // Get 2d drawing context, note that 'd' is lowercase
    c = canvas.getContext('2d')
    // Set canvas width to window inner width and height to window inner height
    w = (canvas.width = window.innerWidth)
    h = (canvas.height = window.innerHeight)
    // Set fill style to semi-transparent black
    c.fillStyle = "rgba(30,30,30,1)"
    // Fill the entire canvas with the fill style
    c.fillRect(0, 0, w, h)
    // Return drawing context and canvas element
    return { c: c, canvas: canvas }
}

// Execute function when page is fully loaded
window.onload = function () {
    // Get drawing context and canvas element
    let c = init("canvas").c,
        canvas = init("canvas").canvas,
        // Set canvas width to window inner width and height to window inner height
        w = (canvas.width = window.innerWidth),
        h = (canvas.height = window.innerHeight),
        // Initialize mouse object
        mouse = { x: false, y: false },
        last_mouse = {}

    // Function to calculate distance between two points
    function dist(p1x, p1y, p2x, p2y) {
        return Math.sqrt(Math.pow(p2x - p1x, 2) + Math.pow(p2y - p1y, 2))
    }

    // Define segment class
    class segment {
        // Constructor to initialize segment object
        constructor(parent, l, a, first) {
            // If it's the first tentacle segment, position is the tentacle top position
            // Otherwise, position is the nextPos coordinates of the previous segment object
            this.first = first
            if (first) {
                this.pos = {
                    x: parent.x,
                    y: parent.y,
                }
            } else {
                this.pos = {
                    x: parent.nextPos.x,
                    y: parent.nextPos.y,
                }
            }
            // Set segment length and angle
            this.l = l
            this.ang = a
            // Calculate coordinates for the next segment
            this.nextPos = {
                x: this.pos.x + this.l * Math.cos(this.ang),
                y: this.pos.y + this.l * Math.sin(this.ang),
            }
        }
        // Method to update segment position
        update(t) {
            // Calculate angle between segment and target point
            this.ang = Math.atan2(t.y - this.pos.y, t.x - this.pos.x)
            // Update position coordinates based on target point and angle
            this.pos.x = t.x + this.l * Math.cos(this.ang - Math.PI)
            this.pos.y = t.y + this.l * Math.sin(this.ang - Math.PI)
            // Update nextPos coordinates based on new position coordinates
            this.nextPos.x = this.pos.x + this.l * Math.cos(this.ang)
            this.nextPos.y = this.pos.y + this.l * Math.sin(this.ang)
        }
        // Method to return segment to initial position
        fallback(t) {
            // Set position coordinates to target point coordinates
            this.pos.x = t.x
            this.pos.y = t.y
            this.nextPos.x = this.pos.x + this.l * Math.cos(this.ang)
            this.nextPos.y = this.pos.y + this.l * Math.sin(this.ang)
        }
        show() {
            c.lineTo(this.nextPos.x, this.nextPos.y)
        }
    }

    // Define tentacle class
    class tentacle {
        // Constructor to initialize tentacle object
        constructor(x, y, l, n, a) {
            // Set tentacle top position coordinates
            this.x = x
            this.y = y
            // Set tentacle length
            this.l = l
            // Set number of tentacle segments
            this.n = n
            // Initialize tentacle target point object
            this.t = {}
            // Set random movement parameter for tentacle
            this.rand = Math.random()
            // Create first segment of the tentacle
            this.segments = [new segment(this, this.l / this.n, 0, true)]
            // Create other segments
            for (let i = 1; i < this.n; i++) {
                this.segments.push(
                    new segment(this.segments[i - 1], this.l / this.n, 0, false)
                )
            }
        }
        // Method to move tentacle to target point
        move(last_target, target) {
            // Calculate angle between tentacle top and target point
            this.angle = Math.atan2(target.y - this.y, target.x - this.x)
            // Calculate tentacle distance parameter
            this.dt = dist(last_target.x, last_target.y, target.x, target.y)
            // Calculate tentacle target point coordinates
            this.t = {
                x: target.x - 0.8 * this.dt * Math.cos(this.angle),
                y: target.y - 0.8 * this.dt * Math.sin(this.angle)
            }
            // If target point is calculated, update position coordinates of last segment object
            // Otherwise, update position coordinates of last segment object to target point coordinates
            if (this.t.x) {
                this.segments[this.n - 1].update(this.t)
            } else {
                this.segments[this.n - 1].update(target)
            }
            // Iterate through all segment objects, update their position coordinates
            for (let i = this.n - 2; i >= 0; i--) {
                this.segments[i].update(this.segments[i + 1].pos)
            }
            if (
                dist(this.x, this.y, target.x, target.y) <=
                this.l + dist(last_target.x, last_target.y, target.x, target.y)
            ) {
                this.segments[0].fallback({ x: this.x, y: this.y })
                for (let i = 1; i < this.n; i++) {
                    this.segments[i].fallback(this.segments[i - 1].nextPos)
                }
            }
        }
        show(target) {
            // If distance between tentacle and target point is less than tentacle length, draw tentacle
            if (dist(this.x, this.y, target.x, target.y) <= this.l) {
                // Set global composite operation to "lighter"
                c.globalCompositeOperation = "lighter"
                // Begin new path
                c.beginPath()
                // Start drawing line from tentacle starting position
                c.moveTo(this.x, this.y)
                // Iterate through all segment objects and use their show method to draw lines
                for (let i = 0; i < this.n; i++) {
                    this.segments[i].show()
                }
                // Set line style
                c.strokeStyle = "hsl(" + (this.rand * 60 + 180) +
                    ",100%," + (this.rand * 60 + 25) + "%)"
                // Set line width
                c.lineWidth = this.rand * 2
                // Set line cap style
                c.lineCap = "round"
                // Set line join style
                c.lineJoin = "round"
                // Draw line
                c.stroke()
                // Set global composite operation to "source-over"
                c.globalCompositeOperation = "source-over"
            }
        }
        // Method to draw tentacle's circular head
        show2(target) {
            // Begin new path
            c.beginPath()
            // If distance between tentacle and target point is less than tentacle length, draw white circle
            // Otherwise draw cyan circle
            if (dist(this.x, this.y, target.x, target.y) <= this.l) {
                c.arc(this.x, this.y, 2 * this.rand + 1, 0, 2 * Math.PI)
                c.fillStyle = "white"
            } else {
                c.arc(this.x, this.y, this.rand * 2, 0, 2 * Math.PI)
                c.fillStyle = "darkcyan"
            }
            // Fill circle
            c.fill()
        }
    }
    // Initialize variables
    let maxl = 400, // Maximum tentacle length
        minl = 50, // Minimum tentacle length
        n = 30, // Number of tentacle segments
        numt = 600, // Number of tentacles
        tent = [], // Array of tentacles
        clicked = false, // Whether mouse is pressed
        target = { x: 0, y: 0 }, // Tentacle target point
        last_target = {}, // Previous tentacle target point
        t = 0, // Current time
        q = 10; // Step length for each tentacle movement

    // Create tentacle objects
    for (let i = 0; i < numt; i++) {
        tent.push(
            new tentacle(
                Math.random() * w, // Tentacle x-coordinate
                Math.random() * h, // Tentacle y-coordinate
                Math.random() * (maxl - minl) + minl, // Tentacle length
                n, // Number of tentacle segments
                Math.random() * 2 * Math.PI, // Tentacle angle
            )
        )
    }
    // Method to draw image
    function draw() {
        // If mouse moves, calculate deviation between tentacle target point and current point
        if (mouse.x) {
            target.errx = mouse.x - target.x
            target.erry = mouse.y - target.y
        } else {
            // Otherwise, calculate x-coordinate of tentacle target point
            target.errx =
                w / 2 +
                ((h / 2 - q) * Math.sqrt(2) * Math.cos(t)) /
                (Math.pow(Math.sin(t), 2) + 1) -
                target.x;
            target.erry =
                h / 2 +
                ((h / 2 - q) * Math.sqrt(2) * Math.cos(t) * Math.sin(t)) /
                (Math.pow(Math.sin(t), 2) + 1) -
                target.y;
        }

        // Update tentacle target point coordinates
        target.x += target.errx / 10
        target.y += target.erry / 10

        // Update time
        t += 0.01;

        // Draw tentacle target point
        c.beginPath();
        c.arc(
            target.x,
            target.y,
            dist(last_target.x, last_target.y, target.x, target.y) + 5,
            0,
            2 * Math.PI
        );
        c.fillStyle = "hsl(210,100%,80%)"
        c.fill();

        // Draw center points of all tentacles
        for (i = 0; i < numt; i++) {
            tent[i].move(last_target, target)
            tent[i].show2(target)
        }
        // Draw all tentacles
        for (i = 0; i < numt; i++) {
            tent[i].show(target)
        }
        // Update previous tentacle target point coordinates
        last_target.x = target.x
        last_target.y = target.y
    }
    // Function to loop animation drawing
    function loop() {
        // Use requestAnimFrame function to loop
        window.requestAnimFrame(loop)

        // Clear canvas
        c.clearRect(0, 0, w, h)

        // Draw animation
        draw()
    }

    // Listen for window resize event
    window.addEventListener("resize", function () {
        // Reset canvas size
        w = canvas.width = window.innerWidth
        h = canvas.height = window.innerHeight

        // Loop animation drawing function
        loop()
    })

    // Loop animation drawing function
    loop()
    // Use setInterval function to loop
    setInterval(loop, 1000 / 60)

    // Listen for mouse move event
    canvas.addEventListener("mousemove", function (e) {
        // Record previous mouse position
        last_mouse.x = mouse.x
        last_mouse.y = mouse.y

        // Update current mouse position
        mouse.x = e.pageX - this.offsetLeft
        mouse.y = e.pageY - this.offsetTop
    }, false)

    // Listen for mouse leave event
    canvas.addEventListener("mouseleave", function (e) {
        // Set mouse to false
        mouse.x = false
        mouse.y = false
    })
}

登入後複製

這裡我大致梳理一下上面程式碼的流程:

初始化階段

  • initFunction:當頁面載入時,呼叫函數init來取得canvas元素並將其寬度和高度設定為視窗的大小。所獲得的2D繪圖上下文用於後續繪圖。
  • window.onload:頁面載入後,初始化canvas,並將context設定為滑鼠的初始狀態。

觸手物體的定義

  • SegmentClass:這是觸手的一段。每一段都有起點(pos)、長度(l)、角度(ang),透過角度(nextPos)計算下一段的位置。
  • tentacleClass:表示一個完整的觸手,由若干節組成。觸手的起點位於螢幕的中心,每個觸手包含多個部分。

觸手的主要方法有:
move:根據滑鼠位置更新每一段的位置。
show: 畫出觸手的路徑。

事件監控

  • canvas.addEventListener('mousemove', ...):當滑鼠移動時,捕捉滑鼠位置並將其儲存在滑鼠變數中。每次滑鼠移動都會更新 mouse 和 last_mouse 的座標,以用於後續動畫。

動畫循環

drawFunction :這是一個用來建立動畫效果的遞歸函式。

  • 首先,它在每一幀中用半透明背景填充畫布,導致先前繪製的內容逐漸消失,產生塗抹效果。
  • 然後,迭代所有觸手,呼叫它們的 move 和 show 方法,更新它們的位置並繪製每一幀。
  • 最後,使用 requestAnimFrame(draw) 進行連續遞歸繪製調用,形成動畫迴圈。

觸手行為

  • 觸手移動的動作是透過函數實現的。觸手的最後一段先更新其位置,然後其他段依序更新。
  • 觸手的繪製是透過show函數完成的,該函數會迭代所有的線段並繪製線條,最後將其顯示在螢幕上。

這樣,你就完成了電子蜘蛛的製作啦! ! !

最後我們來看看最終效果:

Frontend Refresh Project - An Electronic Spider

以上是前端刷新專案—電子蜘蛛的詳細內容。更多資訊請關注PHP中文網其他相關文章!

來源:dev.to
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板