首頁 後端開發 Python教學 在大量程式碼中建置和部署無伺服器 OpenAI 應用程式

在大量程式碼中建置和部署無伺服器 OpenAI 應用程式

Oct 09, 2024 am 06:11 AM

Build & Deploy a Serverless OpenAI App in ines of Code

?想要建置和部署互動式 AI 應用程式? ??? ?????? 就在 內? ???? ?? ????

在本教學課程中,您將使用 LlamaIndex 建立問答引擎,使用 FastAPI 透過 HTTP 提供服務,並使用 DBOS 將其無伺服器部署到雲端。

它基於 LlamaIndex 的 5 行啟動器,只需 4 行即可使其支援雲端。簡單、快速且可擴充!

準備

首先,為您的應用程式建立一個資料夾並啟動虛擬環境。

python3 -m venv ai-app/.venv
cd ai-app
source .venv/bin/activate
touch main.py
登入後複製

然後,安裝相依性並初始化 DBOS 設定檔。

pip install dbos llama-index
dbos init --config
登入後複製

接下來,要運行這個應用程序,您需要一個 OpenAI 開發者帳戶。在此處取得 API 金鑰。將 API 金鑰設定為環境變數。

export OPENAI_API_KEY=XXXXX
登入後複製

在 dbos-config.yaml 中宣告環境變數:

env:
  OPENAI_API_KEY: ${OPENAI_API_KEY}
登入後複製

最後,讓我們下載一些資料。這個應用程式使用保羅·格雷厄姆的“我的工作內容”中的文字。您可以從此連結下載文字並將其保存在應用程式資料夾的 data/paul_graham_essay.txt 下。

現在,您的應用程式資料夾結構應如下所示:

ai-app/
├── dbos-config.yaml
├── main.py
└── data/
    └── paul_graham_essay.txt
登入後複製

加載數據並建立問答引擎

現在,讓我們使用 LlamaIndex 用 5 行程式碼編寫一個簡單的 AI 應用程式。
將以下程式碼加入您的 main.py 中:

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader

documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(documents)

query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
print(response)
登入後複製

該腳本載入資料並在 data/ 資料夾下的文件上建立索引,並透過查詢索引產生答案。您可以執行此腳本,它應該會給您一個回應,例如:

$ python3 main.py

The author worked on writing short stories and programming...
登入後複製

HTTP 服務

現在,讓我們新增一個 FastAPI 端點以透過 HTTP 提供回應。修改你的 main.py 如下:

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from fastapi import FastAPI

app = FastAPI()

documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()

@app.get("/")
def get_answer():
    response = query_engine.query("What did the author do growing up?")
    return str(response)
登入後複製

現在您可以使用 fastapi run main.py 啟動您的應用程式。要查看它是否正常工作,請訪問以下 URL:http://localhost:8000

每次刷新瀏覽器視窗時,結果可能會略有不同!

託管在 DBOS 雲端上

要將您的應用程式部署到 DBOS Cloud,您只需在 main.py 中新增兩行:

  • 從 dbos 匯入 DBOS
  • DBOS(fastapi=應用程式)
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
from fastapi import FastAPI
from dbos import DBOS

app = FastAPI()
DBOS(fastapi=app)

documents = SimpleDirectoryReader("data").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()

@app.get("/")
def get_answer():
    response = query_engine.query("What did the author do growing up?")
    return str(response)
登入後複製

現在,如果尚未安裝 DBOS Cloud CLI(需要 Node.js):

npm i -g @dbos-inc/dbos-cloud
登入後複製

然後將相依性凍結到requirements.txt並部署到DBOS Cloud:

pip freeze > requirements.txt
dbos-cloud app deploy
登入後複製

不到一分鐘,它就會列印 Access your application at
若要查看您的應用程式是否正常執行,請造訪 在您的瀏覽器中。

恭喜您,您已成功將您的第一個 AI 應用程式部署到 DBOS Cloud!您可以在雲端控制台中看到您部署的應用程式。

下一步

這只是您 DBOS 之旅的開始。接下來,看看 DBOS 如何讓您的 AI 應用程式更具可擴展性和彈性:

  • 使用持久執行來編寫防崩潰工作流程。
  • 使用佇列優雅地管理 AI/LLM API 速率限制。
  • 想要建立更複雜的應用程式嗎?查看人工智慧驅動的 Slackbot。

試試看並告訴我你的想法?

以上是在大量程式碼中建置和部署無伺服器 OpenAI 應用程式的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1655
14
CakePHP 教程
1413
52
Laravel 教程
1306
25
PHP教程
1252
29
C# 教程
1226
24
Python vs.C:申請和用例 Python vs.C:申請和用例 Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

Python:遊戲,Guis等 Python:遊戲,Guis等 Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

您可以在2小時內學到多少python? 您可以在2小時內學到多少python? Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

2小時的Python計劃:一種現實的方法 2小時的Python計劃:一種現實的方法 Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python與C:學習曲線和易用性 Python與C:學習曲線和易用性 Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python:探索其主要應用程序 Python:探索其主要應用程序 Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

Python和時間:充分利用您的學習時間 Python和時間:充分利用您的學習時間 Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python:自動化,腳本和任務管理 Python:自動化,腳本和任務管理 Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

See all articles