在大量程式碼中建置和部署無伺服器 OpenAI 應用程式
?想要建置和部署互動式 AI 應用程式? ??? ?????? 就在 內? ???? ?? ????
在本教學課程中,您將使用 LlamaIndex 建立問答引擎,使用 FastAPI 透過 HTTP 提供服務,並使用 DBOS 將其無伺服器部署到雲端。
它基於 LlamaIndex 的 5 行啟動器,只需 4 行即可使其支援雲端。簡單、快速且可擴充!
準備
首先,為您的應用程式建立一個資料夾並啟動虛擬環境。
python3 -m venv ai-app/.venv cd ai-app source .venv/bin/activate touch main.py
然後,安裝相依性並初始化 DBOS 設定檔。
pip install dbos llama-index dbos init --config
接下來,要運行這個應用程序,您需要一個 OpenAI 開發者帳戶。在此處取得 API 金鑰。將 API 金鑰設定為環境變數。
export OPENAI_API_KEY=XXXXX
在 dbos-config.yaml 中宣告環境變數:
env: OPENAI_API_KEY: ${OPENAI_API_KEY}
最後,讓我們下載一些資料。這個應用程式使用保羅·格雷厄姆的“我的工作內容”中的文字。您可以從此連結下載文字並將其保存在應用程式資料夾的 data/paul_graham_essay.txt 下。
現在,您的應用程式資料夾結構應如下所示:
ai-app/ ├── dbos-config.yaml ├── main.py └── data/ └── paul_graham_essay.txt
加載數據並建立問答引擎
現在,讓我們使用 LlamaIndex 用 5 行程式碼編寫一個簡單的 AI 應用程式。
將以下程式碼加入您的 main.py 中:
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader documents = SimpleDirectoryReader("data").load_data() index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine() response = query_engine.query("What did the author do growing up?") print(response)
該腳本載入資料並在 data/ 資料夾下的文件上建立索引,並透過查詢索引產生答案。您可以執行此腳本,它應該會給您一個回應,例如:
$ python3 main.py The author worked on writing short stories and programming...
HTTP 服務
現在,讓我們新增一個 FastAPI 端點以透過 HTTP 提供回應。修改你的 main.py 如下:
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from fastapi import FastAPI app = FastAPI() documents = SimpleDirectoryReader("data").load_data() index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine() @app.get("/") def get_answer(): response = query_engine.query("What did the author do growing up?") return str(response)
現在您可以使用 fastapi run main.py 啟動您的應用程式。要查看它是否正常工作,請訪問以下 URL:http://localhost:8000
每次刷新瀏覽器視窗時,結果可能會略有不同!
託管在 DBOS 雲端上
要將您的應用程式部署到 DBOS Cloud,您只需在 main.py 中新增兩行:
- 從 dbos 匯入 DBOS
- DBOS(fastapi=應用程式)
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from fastapi import FastAPI from dbos import DBOS app = FastAPI() DBOS(fastapi=app) documents = SimpleDirectoryReader("data").load_data() index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine() @app.get("/") def get_answer(): response = query_engine.query("What did the author do growing up?") return str(response)
現在,如果尚未安裝 DBOS Cloud CLI(需要 Node.js):
npm i -g @dbos-inc/dbos-cloud
然後將相依性凍結到requirements.txt並部署到DBOS Cloud:
pip freeze > requirements.txt dbos-cloud app deploy
不到一分鐘,它就會列印 Access your application at
若要查看您的應用程式是否正常執行,請造訪
恭喜您,您已成功將您的第一個 AI 應用程式部署到 DBOS Cloud!您可以在雲端控制台中看到您部署的應用程式。
下一步
這只是您 DBOS 之旅的開始。接下來,看看 DBOS 如何讓您的 AI 應用程式更具可擴展性和彈性:
- 使用持久執行來編寫防崩潰工作流程。
- 使用佇列優雅地管理 AI/LLM API 速率限制。
- 想要建立更複雜的應用程式嗎?查看人工智慧驅動的 Slackbot。
試試看並告訴我你的想法?
以上是在大量程式碼中建置和部署無伺服器 OpenAI 應用程式的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。
