Pandas 中的鍊式分配什麼時候會出現問題?
了解Pandas 中的鍊式賦值
簡介:
使用Pandas 時,使用者可能會遇到「 SettingWithCopy」警告:引起對資料結構操作行為的關注。本文旨在闡明鍊式賦值的概念及其在 Pandas 中的意義,特別關注 .ix()、.iloc() 和 .loc() 的作用。
鍊式賦值解釋
在 Pandas 中,鍊式分配涉及在 DataFrame 或 Series 上執行的一系列操作,這些操作將值分配給特定的列或元素。但是,直接為 Series 或 DataFrame 賦值可能會因創建潛在副本而導致意外行為。
偵測鍊式分配
當 Pandas 懷疑鍊式分配被破壞時,它會發出警告 (SettingWithCopyWarnings)正在被使用。這些警告旨在提醒使用者可能出現的意外後果,因為它們可能會導致資料副本被修改,從而造成混亂。
.ix()、.iloc() 和.loc() 對Chained 的影響賦值
.ix()、.iloc() 或.loc() 方法的選擇不會直接影響鍊式賦值。這些方法主要用於行和列選擇,不會影響賦值的行為。
鍊式賦值的後果
鍊式賦值可能會導致意外結果,例如資料副本被複製修改而不是原始物件。這可能會導致混亂,並使其難以追蹤更改和識別資料的正確狀態。
避免鍊式分配和警告
為了避免鍊式分配及其產生的警告,建議對資料副本而不是原始物件執行操作。這可確保將變更套用到所需位置而不會出現任何歧義。
停用連結分配警告
如果需要,使用者可以透過將「chained_assignment」選項設為「None」來停用連結警告使用 pd.set_option()。但是,通常不建議停用這些警告,因為它們是潛在問題的寶貴指標。
鍊式分配範例
考慮原始請求中提供的範例:
data['amount'] = data['amount'].astype(float) data["amount"].fillna(data.groupby("num")["amount"].transform("mean"), inplace=True) data["amount"].fillna(mean_avg, inplace=True)
在此範例中,第一行將數值指派給「amount」欄,這可能會也可能不會建立副本。後續行對「金額」列進行操作,該列可能是副本而不是原始資料。將 fillna() 操作的結果分配給新列或變數而不是直接修改“amount”列更為明確。
推薦程式碼
避免在提供範例,建議使用以下程式碼:
new_amount = data["amount"].fillna(data.groupby("num")["amount"].transform("mean")) data["new_amount"] = new_amount.fillna(mean_avg)
以上是Pandas 中的鍊式分配什麼時候會出現問題?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。
