如何使用「np.ix_」為具有兩個索引清單的 2D NumPy 陣列建立索引?
使用2 個索引清單對2D Numpy 陣列建立索引
問題陳述
使用下列方法對2D Numpy數組建立索引兩個單獨的索引列表並不像使用單一索引列表那麼簡單。在處理大型數組時,這可能具有挑戰性,因為它需要廣播和重塑數組才能實現所需的索引選擇。
使用np.ix_ 和廣播的解決方案
Numpy 中的np.ix_ 函數可用於建立索引數組的元組,這些索引數組可以相互廣播以實現所需的索引模式。這種方法可以保持可讀性並促進程式碼優化。
要使用np.ix_ 執行索引,請按照以下步驟操作:
- 使用np.ix_ 以及行索引和列索引建立兩個廣播數組.
- 使用這些索引數組在原始數組中選擇所需的行和列。
範例程式碼
以下程式碼示範如何使用np.ix_ 進行基於索引的選擇:
<code class="python">import numpy as np # Create indices row_indices = [4, 2, 18, 16, 7, 19, 4] col_indices = [1, 2] # Create broadcasting arrays index_tuples = np.ix_(row_indices, col_indices) # Perform indexing x_indexed = x[index_tuples]</code>
範例輸出
>>> x_indexed array([[76, 56], [70, 47], [46, 95], [76, 56], [92, 46]])
其他注意事項
替代語法:
使用np.ix_ 的替代語法是使用: 運算子指定沿軸的所有索引,除非另有指定。
廣播:
需要注意的是,廣播是沿著輸入陣列的軸發生的。因此,沿每個軸的索引數組的大小應與輸入數組的相應維度相符。
最佳化:
使用 np.ix_ 和廣播進行索引可以提供顯著的效能優勢與迭代索引或使用布林遮罩相比。這在處理大型數組時特別有利。
以上是如何使用「np.ix_」為具有兩個索引清單的 2D NumPy 陣列建立索引?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python在科學計算中的應用包括數據分析、機器學習、數值模擬和可視化。 1.Numpy提供高效的多維數組和數學函數。 2.SciPy擴展Numpy功能,提供優化和線性代數工具。 3.Pandas用於數據處理和分析。 4.Matplotlib用於生成各種圖表和可視化結果。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優
