首頁 後端開發 Python教學 如何在不使用 Python 中的多處理或執行緒的情況下並行運行多個子進程並收集它們的輸出?

如何在不使用 Python 中的多處理或執行緒的情況下並行運行多個子進程並收集它們的輸出?

Oct 26, 2024 pm 09:51 PM

How can I run multiple subprocesses in parallel and collect their output without using multiprocessing or threading in Python?

與輸出集合並行運行子進程

在給定的場景中,多個cat | zgrep 命令正在遠端伺服器上按順序執行。要在收集各個輸出的同時同時執行這些命令,我​​們需要避免使用多處理或執行緒。

一個簡單的解決方案是使用 subprocess 模組中的 Popen 函數。透過為每個命令建立單獨的 Popen 物件並向它們傳遞 shell 參數,我們可以並行運行它們。命令完成後,我們可以使用 wait 方法收集它們的退出代碼。以下是一個範例:

<code class="python">from subprocess import Popen

# Create a list of commands
commands = ['echo {i:d}; sleep 2; echo {i:d}' for i in range(5)]

# Run commands in parallel
processes = [Popen(command, shell=True) for command in commands]

# Collect statuses
exitcodes = [p.wait() for p in processes]</code>
登入後複製

此程式碼同時執行五個指令,並在完成後收集它們的退出程式碼。

要收集命令的輸出,我們可以使用執行緒或單獨進程中的通訊方法。例如,使用執行緒池:

<code class="python">from multiprocessing.dummy import Pool # thread pool
from subprocess import Popen

# Run commands in parallel
processes = [Popen(command, shell=True, close_fds=True) for command in commands]

# Collect output in parallel
def get_output(process):
    return process.communicate()[0]

outputs = Pool(len(processes)).map(get_output, processes)</code>
登入後複製

此程式碼在執行緒池中同時執行所有命令,並將其輸出收集到一個清單中,其中每個元素對應於單一命令的輸出。

另一種選擇是在同一線程中使用asyncio 模組進行輸出收集(Python 3.8 及更高版本):

<code class="python">import asyncio
from subprocess import PIPE

async def get_output(command):
    process = await asyncio.create_subprocess_shell(command, stdout=PIPE)
    return (await process.communicate()[0]).decode()

# Get commands output in parallel
coros = [get_output(command) for command in commands]
outputs = await asyncio.gather(*coros)</code>
登入後複製

此程式碼建立同時執行命令的協程並將其輸出作為列表返回。

以上是如何在不使用 Python 中的多處理或執行緒的情況下並行運行多個子進程並收集它們的輸出?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1669
14
CakePHP 教程
1428
52
Laravel 教程
1329
25
PHP教程
1273
29
C# 教程
1256
24
Python與C:學習曲線和易用性 Python與C:學習曲線和易用性 Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python和時間:充分利用您的學習時間 Python和時間:充分利用您的學習時間 Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

學習Python:2小時的每日學習是否足夠? 學習Python:2小時的每日學習是否足夠? Apr 18, 2025 am 12:22 AM

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python標準庫的哪一部分是:列表或數組? Python標準庫的哪一部分是:列表或數組? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python:自動化,腳本和任務管理 Python:自動化,腳本和任務管理 Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python vs. C:了解關鍵差異 Python vs. C:了解關鍵差異 Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Web開發的Python:關鍵應用程序 Web開發的Python:關鍵應用程序 Apr 18, 2025 am 12:20 AM

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優

See all articles