為什麼我的 DataFrame 列在字串轉換後顯示'Object”資料類型?
儘管明確字串轉換,DataFrame 列仍顯示「物件」資料型別
問題:
儘管嘗試明確轉換a 中的指定列DataFrame 到字串,它們保留為dtype 'object'。檢查各個列值確認它們確實是字串。
Int64Index: 56992 entries, 0 to 56991 Data columns (total 7 columns): id 56992 non-null values attr1 56992 non-null values attr2 56992 non-null values attr3 56992 non-null values attr4 56992 non-null values attr5 56992 non-null values attr6 56992 non-null values dtypes: int64(2), object(5) Column 'attr2' remains as dtype 'object' despite conversion: convert attr2 to string
說明:
Pandas 使用 dtype 'object' 來描述包含可變長度資料類型的列,例如字串。這與“int64”和“float64”等固定長度資料類型不同。在內部,Pandas 使用指向「物件」ndarray 中的字串物件的指標來儲存字串資料。
int64 array: [1, 2, 3, 4] object array: [pointer to string 'John', pointer to string 'Mary', pointer to string 'Bob', pointer to string 'Alice']
「dtype 物件」並不表示其中的物件不是字串。每個字串物件仍然駐留在記憶體中,並且可以透過「物件」ndarray 中的指標存取。
為了確保 Pandas 將列識別為字串,請確保這些列中的所有元素都是一致的字串。此外,也可以使用 .apply(str) 或 .astype('string') 等方法將元素轉換為字串。
以上是為什麼我的 DataFrame 列在字串轉換後顯示'Object”資料類型?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。
