為什麼Python的.loc[row_indexer, col_indexer]會觸發「SettingWithCopyWarning」以及如何解決?
使用.loc[row_indexer, col_indexer] 時克服Python 中的“SettingWithCopyWarning”
嘗試使用.loc[row_indexer 修改DataDataFrame精神切片時出現“SetWunting” ],儘管理論上避免了複製操作。在這種情況下,有必要檢查另一個 DataFrame 是否會影響目前的 DataFrame。
重現錯誤:
- 從字典建立DataFrame df .
- 建立一個新欄位並使用.loc .loc[0, 'new_column'] = 100.
- 使用過濾器從df 建立一個新的DataFrame new_df:new_df = df.loc[df.col1>2].
- 嘗試更新new_df 中的值: new_df.loc[2, 'new_column'] = 100.這將觸發“SettingWithCopyWarning。”
解決方案- 使用.copy():
要解決此問題,在建立時使用.copy() 至關重要過濾後的資料幀new_df。這將建立原始 DataFrame 的副本,允許修改而不觸發警告。<code class="python">new_df_copy = df.loc[df.col1>2].copy() new_df_copy.loc[2, 'new_column'] = 100</code>
避免 Convert_objects(convert_numeric= 的警告)正確):
“convert_objects(convert_numeric=True)”函數也可能觸發警告。為了避免這種情況,請在應用函數之前使用.copy():<code class="python">value1['Total Population'] = value1['Total Population'].astype(str).copy().convert_objects(convert_numeric=True)</code>
以上是為什麼Python的.loc[row_indexer, col_indexer]會觸發「SettingWithCopyWarning」以及如何解決?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。
