如何使用 Pandas 和 Matplotlib 或 Seaborn 建立聚類堆積長條圖?
建立聚類堆疊條形圖
問題:
考慮兩個資料幀df1 和df2,它們具有相同的索引,但可能具有不同的列,其中每個資料幀行代表一個類別,每列代表一個指標。目標是建立聚類堆疊條形圖,其中每個類別的條形圖分組在一起,每個資料幀的條形圖彼此堆疊。
使用 Pandas 和 Matplotlib 的解決方案:
<code class="python">import pandas as pd import matplotlib.pyplot as plt import matplotlib.cm as cm def plot_clustered_stacked(df_list, labels=None, title="Clustered Stacked Bar Plot"): n_dataframes = len(df_list) n_columns = len(df_list[0].columns) n_index = len(df_list[0].index) fig, ax = plt.subplots() # Iterate through each dataframe for i, df in enumerate(df_list): # Plot the bars for the current dataframe df.plot(kind="bar", ax=ax, linewidth=0, stacked=True, legend=False, grid=False) # Adjust the position and width of the bars for df, j in zip(df_list, range(n_dataframes)): for n, rect in enumerate(ax.patches): if rect.get_y() == 0: # Stacked bar for dataframe df rect.set_x(rect.get_x() + j / float(n_dataframes)) rect.set_width(1 / float(n_dataframes)) # Set the x-axis labels and ticks ax.set_xticks(np.arange(0, n_index) + 0.5) ax.set_xticklabels(df.index) # Add a legend for the dataframes plt.legend([df.stack(level=0).index[0] for df in df_list], labels) # Set the plot title ax.set_title(title) # Create example dataframes df1 = pd.DataFrame(np.random.rand(4, 3), index=["A", "B", "C", "D"], columns=["x", "y", "z"]) df2 = pd.DataFrame(np.random.rand(4, 3), index=["A", "B", "C", "D"], columns=["x", "y", "z"]) # Plot the clustered stacked bar plot plot_clustered_stacked([df1, df2], labels=["df1", "df2"])</code>
使用 Seaborn 和 Pandas 的解決方案:
<code class="python">import seaborn as sns # Concatenate the dataframes into a single dataframe with a wide format df = pd.concat([df1.reset_index().melt(id_vars=["index"]), df2.reset_index().melt(id_vars=["index"])]) # Plot the clustered stacked bar plot g = sns.FacetGrid(data=df, col="variable", hue="index") g.map_dataframe(sns.barplot, order=df["index"].unique())</code>
以上是如何使用 Pandas 和 Matplotlib 或 Seaborn 建立聚類堆積長條圖?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python因其簡潔與強大而備受青睞,適用於從初學者到高級開發者的各種需求。其多功能性體現在:1)易學易用,語法簡單;2)豐富的庫和框架,如NumPy、Pandas等;3)跨平台支持,可在多種操作系統上運行;4)適合腳本和自動化任務,提升工作效率。
