如何透過「apply()」使用前一行值計算 DataFrame 中的欄位?
使用 apply() 迭代 DataFrame 並考慮先前的值
在 pandas 中,apply() 函數通常用於將函數應用於 DataFrame 的每一行。然而,當也使用相同的 apply() 方法計算前一行值時,就會出現挑戰。
考慮以下 DataFrame:
Index_Date | A | B | C | D |
---|---|---|---|---|
2015-01-31 | 10 | 10 | NaN | 10 |
2015-02-01 | 2 | 3 | NaN | 22 |
2015-02-02 | 10 | 60 | NaN | 280 |
2015-02-03 | 10 | 100 | NaN | 250 |
目標是派生欄位 C:
- 對於 2015-01-31,將其設定為 D 的值。
- 對於後續行,將 C 的前一行值乘以 A 的目前行值,然後將其加到B 的目前行值。
解:
為此,我們先設定2015-01-31 的C 初始值:
<code class="python">df.loc[0, 'C'] = df.loc[0, 'D']</code>
然後,我們迭代剩餘的行並使用所需的計算更新C 值:
<code class="python">for i in range(1, len(df)): df.loc[i, 'C'] = df.loc[i-1, 'C'] * df.loc[i, 'A'] + df.loc[i, 'B']</code>
這些操作後的最終DataFrame:
Index_Date | A | B | C | D |
---|---|---|---|---|
2015-01-31 | 10 | 10 | 10 | 10 |
2015-02-01 | 2 | 3 | 23 | 22 |
2015-02-02 | 10 | 60 | 290 | 280 |
以上是如何透過「apply()」使用前一行值計算 DataFrame 中的欄位?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。
