回歸演算法的指標
迴歸演算法的誤差度量
當我們建立迴歸演算法並想知道模型的效率如何時,我們使用錯誤度量來取得代表機器學習模型錯誤的值。當我們想要測量數值(實數、整數)的預測模型的誤差時,本文的指標就非常重要。
在本文中,我們將介紹迴歸演算法的主要誤差指標,在 Python 中手動執行計算,並在美元報價資料集上測量機器學習模型的誤差。
所涉及的指標
- SE — 誤差總和
- ME — 平均誤差
- MAE — 平均絕對誤差
- MPE — 平均百分比誤差
- MAPAE — 平均絕對百分比誤差
這兩個指標有點相似,我們有平均值和誤差百分比的指標,以及平均和絕對誤差百分比的指標,只是有區別,以便一組獲得差異的實際值,另一組獲得絕對值的差異。重要的是要記住,在這兩個指標中,數值越低,我們的預測就越好。
SE - 誤差總和
SE 指標是本文中最簡單的指標,其公式為:
SE = εR — P
因此,它是真實值(模型的目標變數)與預測值之間的差值總和。此指標有一些缺點,例如不將值視為絕對值,這將導致錯誤值。
ME - 誤差平均值
ME 指標是 SE 的“補充”,我們基本上有一個區別,即我們將在給定元素數量的情況下獲得 SE 的平均值:
ME = ε(R-P)/N
與 SE 不同,我們只需將 SE 結果除以元素數量。這個指標和 SE 一樣,取決於規模,也就是說,我們必須使用同一組數據,並且可以與不同的預測模型進行比較。
MAE——平均絕對誤差
MAE 指標是 ME,但僅考慮絕對(非負)值。當我們計算實際值和預測值之間的差異時,我們可能會得到負結果,而這種負差異會應用於先前的指標。在這個指標中,我們必須將差異轉換為正值,然後根據元素數量取平均值。
MPE:平均百分比誤差
MPE 指標是平均誤差佔每個差異總和的百分比。這裡我們必須取得差異的百分比,將其相加,然後除以元素數量以獲得平均值。因此,實際值和預測值之間的差異除以實際值,再乘以 100,我們將所有這些百分比相加,然後除以元素數量。此指標與比例 (%) 無關。
MAPAE - 平均絕對百分比誤差
MAPAE 指標與先前的指標非常相似,但是預測 x 實際之間的差異是絕對的,也就是說,您用正值來計算它。因此,該指標是錯誤百分比的絕對差異。此指標也是與尺度無關的。
在實踐中使用指標
給出每個指標的解釋,我們將根據美元匯率機器學習模型的預測,在 Python 中手動計算這兩個指標。目前,大多數迴歸指標都存在於 Sklearn 套件中的現成函數中,但這裡我們將手動計算它們,僅用於教學目的。
我們將只使用隨機森林和決策樹演算法來比較兩個模型之間的結果。
數據分析
在我們的資料集中,我們有 SaldoMercado 和 saldoMercado_2 欄,它們是影響 Value 欄位(我們的美元報價)的資訊。正如我們所看到的,MercadoMercado 餘額與報價的關係比 Merado_2 餘額更密切。也可以觀察到我們沒有缺失值(無限或 Nan 值),而balanceMercado_2 欄位有許多非絕對值。
模型準備
我們透過定義預測變數和我們想要預測的變數來準備機器學習模型的值。我們使用train_test_split將資料隨機分為30%用於測試,70%用於訓練。
最後,我們初始化兩種演算法(RandomForest 和 DecisionTree),擬合數據並用測試數據測量兩種演算法的分數。我們獲得了 TreeRegressor 83% 的分數和 ForestRegressor 90% 的分數,這在理論上表明 ForestRegressor 表現更好。
結果與分析
鑑於 ForestRegressor 的部分觀察到的效能,我們建立了一個包含應用指標所需資料的資料集。我們對測試資料進行預測,並使用實際值和預測值建立一個 DataFrame,包括差異和百分比欄位。
我們可以觀察到,相對於美元匯率的實際總額與我們模型預測的匯率:
- 我們的總差額為 R$578.00
- 這代表預測 x 實際值之間存在 0.36% 的差異(不考慮絕對值)
- 就平均誤差 (ME) 而言,我們的值較低,平均為 R$0.009058
- 對於絕對平均值,該值會增加一點,因為我們的資料集中有負值
我強調,這裡我們是出於教學目的手動執行計算。但是,建議使用 Sklearn 套件中的指標函數,因為它具有更好的性能並且計算出錯的可能性較低。
完整的程式碼可以在我的 GitHub 上找到:github.com/AirtonLira/artigo_metricasregressao
作者:Airton Lira Junior
LinkedIn:linkedin.com/in/airton-lira-junior-6b81a661/
以上是回歸演算法的指標的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。
