首頁 後端開發 Python教學 為什麼我的 Keras 模型在訓練期間似乎只使用了 Fashion MNIST 資料集的一部分,即使它正在處理 1875 個批次?

為什麼我的 Keras 模型在訓練期間似乎只使用了 Fashion MNIST 資料集的一部分,即使它正在處理 1875 個批次?

Nov 04, 2024 am 09:06 AM

Why does my Keras model seem to only use part of my Fashion MNIST dataset during training, even though it's processing 1875 batches?

Keras 訓練限制:解決部分資料集使用

使用Keras 訓練神經網路模型時,確保整個資料集是至關重要的訓練期間使用。然而,在某些情況下,使用者可能會遇到僅使用一小部分資料的問題。本文探討了一個特定案例,其中在 Fashion MNIST 資料集上訓練的模型僅使用部分可用數據,提供了全面的解釋和解決方案。

提供的程式碼片段利用 model.fit() 方法預設參數,其中批次大小為 32。這意味著在每次迭代或 epoch 期間,模型都會處理訓練資料集中的 32 個樣本。對於包含 60,000 個樣本的 Fashion MNIST 資料集,模型需要多次迭代整個資料集才能完成訓練。然而,控制台中顯示的輸出表明模型在 1875 次迭代中完成了一個 epoch。

出現這種差異是因為 model.fit() 方法報告的是訓練期間處理的批次數,而不是總數樣品。因此,在本例中,模型對 1875 個批次進行訓練,每個批次包含 32 個樣本,總共有 1875 * 32 = 60,000 個樣本。這意味著該模型確實在利用整個資料集進行訓練,儘管在每個時期顯示「1875/1875」的誤導性進度條。

為了避免混淆並準確追蹤訓練過程的進度,它建議計算並顯示每個時期處理的樣本數。這可以透過修改列印進度的程式碼來實現,如下所示:

<code class="python">for epoch in range(10):
    print(f"Current Epoch: {epoch + 1}")
    for batch_idx in range(1875):
        model.train_step((train_images[batch_idx * 32 : (batch_idx + 1) * 32],
                          train_labels[batch_idx * 32 : (batch_idx + 1) * 32]))
        print(f"Batch {batch_idx + 1} processed.")</code>
登入後複製

使用此方法,控制台將同時顯示批次和樣本的進度,讓您清楚地了解訓練過程並確認模型正在按預期利用整個數據集。

以上是為什麼我的 Keras 模型在訓練期間似乎只使用了 Fashion MNIST 資料集的一部分,即使它正在處理 1875 個批次?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1666
14
CakePHP 教程
1426
52
Laravel 教程
1328
25
PHP教程
1273
29
C# 教程
1254
24
Python:遊戲,Guis等 Python:遊戲,Guis等 Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python與C:學習曲線和易用性 Python與C:學習曲線和易用性 Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python和時間:充分利用您的學習時間 Python和時間:充分利用您的學習時間 Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python標準庫的哪一部分是:列表或數組? Python標準庫的哪一部分是:列表或數組? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python:自動化,腳本和任務管理 Python:自動化,腳本和任務管理 Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

學習Python:2小時的每日學習是否足夠? 學習Python:2小時的每日學習是否足夠? Apr 18, 2025 am 12:22 AM

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python vs. C:了解關鍵差異 Python vs. C:了解關鍵差異 Apr 21, 2025 am 12:18 AM

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

See all articles