如何使用局部最大濾波來識別代表狗爪的二維數組中的壓力峰值?

DDD
發布: 2024-11-04 09:25:30
原創
716 人瀏覽過

How can local maximum filtering be used to identify pressure peaks in a 2D array representing a dog's paw?

二維數組中的峰值偵測

挑戰:

挑戰:

檢測

偵測的峰值代表狗爪下的壓力測量值,以描繪解剖學分區。

<code class="python">import numpy as np
import matplotlib.pyplot as plt
from scipy.ndimage.filters import maximum_filter
from scipy.ndimage.morphology import generate_binary_structure, binary_erosion

# Define the paw data
paw_data = np.loadtxt("paws.txt").reshape(4, 11, 14)

# Define the 8-connected neighborhood
neighborhood = generate_binary_structure(2, 2)

# Function to detect peaks
def detect_peaks(image):
    # Local maximum filter
    local_max = maximum_filter(image, footprint=neighborhood) == image
    
    # Create a mask of the background
    background = (image == 0)
    
    # Erode the background to remove artifacts
    eroded_background = binary_erosion(background, structure=neighborhood, border_value=1)
    
    # Final mask containing only peaks
    detected_peaks = local_max ^ eroded_background
    
    return detected_peaks

# Detect peaks for each paw
paws = [p.squeeze() for p in np.vsplit(paw_data, 4)]
detected_peaks_list = []
for paw in paws:
    detected_peaks = detect_peaks(paw)
    detected_peaks_list.append(detected_peaks)

# Plot the results
fig, axs = plt.subplots(4, 2, figsize=(10, 10))
for i, paw in enumerate(paws):
    axs[i, 0].imshow(paw)
    axs[i, 0].set_title("Paw Image")
    axs[i, 1].imshow(detected_peaks_list[i])
    axs[i, 1].set_title("Peak Detection")

plt.tight_layout()
plt.show()</code>
登入後複製
解決方案:

實際的解決方案包括使用局部最大濾波器來識別峰值。方法如下:

  • 注意事項:
  • 此方法假設背景乾淨,可能不適合噪音資料。
鄰近大小可能需要根據峰值大小進行調整。 進一步分析可能涉及使用 scipy.ndimage.measurements.label 來標記不同的物件(峰值)。

以上是如何使用局部最大濾波來識別代表狗爪的二維數組中的壓力峰值?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

來源:php.cn
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板
關於我們 免責聲明 Sitemap
PHP中文網:公益線上PHP培訓,幫助PHP學習者快速成長!