PyTorch 中的 eq 和 ne

Susan Sarandon
發布: 2024-11-05 19:12:02
原創
649 人瀏覽過

eq and ne in PyTorch

請我喝杯咖啡☕

*備忘錄:

  • 我的帖子解釋了 gt() 和 lt()。
  • 我的帖子解釋了 ge() 和 le()。
  • 我的貼文解釋了 isclose() 和 equal()。

eq() 可以檢查第一個0D 或更多D 張量的零個或多個元素是否等於第二個0D 或更多D 張量的零個或多個元素,得到0D 或更多D 張量零個或多個元素,如下所示:

*備忘錄:

  • eq() 可以與 torch 或張量一起使用。
  • 第一個參數(輸入)使用 torch 或使用張量(必要類型:int、float、complex 或 bool 的張量)。
  • 帶有 torch 的第二個參數或帶有張量的第一個參數是其他(必需類型:張量或 int、float、complex 或 bool 標量)。
  • torch 存在 out 參數(可選-預設:無-型別:張量): *備註:
    • 必須使用 out=。
    • 我的貼文解釋了論點。
  • 結果是具有更多元素的更高 D 張量。
import torch

tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([7, 0, 3])

torch.eq(input=tensor1, other=tensor2)
tensor1.eq(other=tensor2)
torch.eq(input=tensor2, other=tensor1)
# tensor([False, True, True])

tensor1 = torch.tensor(5)
tensor2 = torch.tensor([[3, 5, 4],
                        [6, 3, 5]])
torch.eq(input=tensor1, other=tensor2)
torch.eq(input=tensor2, other=tensor1)
# tensor([[False, True, False],
#         [False, False, True]])

torch.eq(input=tensor1, other=3)
# tensor(False)

torch.eq(input=tensor2, other=3)
# tensor([[True, False, False],
#         [False, True, False]])

tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([[5, 5, 5],
                        [0, 0, 0],
                        [3, 3, 3]])
torch.eq(input=tensor1, other=tensor2)
torch.eq(input=tensor2, other=tensor1)
# tensor([[True, False, False],
#         [False, True, False], 
#         [False, False, True]])

torch.eq(input=tensor1, other=3)
# tensor([False, False, True])

torch.eq(input=tensor2, other=3)
# tensor([[False, False, False],
#         [False, False, False],
#         [True, True, True]])

tensor1 = torch.tensor([5., 0., 3.])
tensor2 = torch.tensor([[5., 5., 5.],
                        [0., 0., 0.],
                        [3., 3., 3.]])
torch.eq(input=tensor1, other=tensor2)
# tensor([[True, False, False],
#         [False, True, False], 
#         [False, False, True]])

torch.eq(input=tensor1, other=3.)
# tensor([False, False, True])

tensor1 = torch.tensor([5.+0.j, 0.+0.j, 3.+0.j])
tensor2 = torch.tensor([[5.+0.j, 5.+0.j, 5.+0.j],
                        [0.+0.j, 0.+0.j, 0.+0.j],
                        [3.+0.j, 3.+0.j, 3.+.0j]])
torch.eq(input=tensor1, other=tensor2)
# tensor([[True, False, False],
#         [False, True, False],
#         [False, False, True]])

torch.eq(input=tensor1, other=3.+0.j)
# tensor([False, False, True])

tensor1 = torch.tensor([True, False, True])
tensor2 = torch.tensor([[True, False, True],
                        [False, True, False],
                        [True, False, True]])
torch.eq(input=tensor1, other=tensor2)
# tensor([[True, True, True],
#         [False, False, False],
#         [True, True, True]])

torch.eq(input=tensor1, other=True)
# tensor([True, False, True])
登入後複製

ne() 可以依元素檢查第一個0D 或更多D 張量的零個或多個元素是否不等於第二個0D 或更多D 張量的零個或多個元素,得到0D或更多D 張量零個或多個元素,如下圖所示:

*備忘錄:

  • ne() 可以與 torch 或張量一起使用。
  • 第一個參數(輸入)使用 torch 或使用張量(必要類型:int、float、complex 或 bool 的張量)。
  • 帶有 torch 的第二個參數或帶有張量的第一個參數是其他(必需類型:張量或 int、float、complex 或 bool 標量)。
  • torch 存在 out 參數(可選-預設:無-型別:張量): *備註:
    • 必須使用 out=。
    • 我的貼文解釋了論點。
  • not_equal() 是 ne() 的別名。
import torch

tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([7, 0, 3])

torch.ne(input=tensor1, other=tensor2)
tensor1.ne(other=tensor2)
torch.ne(input=tensor2, other=tensor1)
# tensor([True, False, False])

tensor1 = torch.tensor(5)
tensor2 = torch.tensor([[3, 5, 4],
                        [6, 3, 5]])
torch.ne(input=tensor1, other=tensor2)
torch.ne(input=tensor2, other=tensor1)
# tensor([[True, False, True],
#         [True, True, False]])

torch.ne(input=tensor1, other=3)
# tensor(True)

torch.ne(input=tensor2, other=3)
# tensor([[False, True, True],
#         [True, False, True]])

tensor1 = torch.tensor([5, 0, 3])
tensor2 = torch.tensor([[5, 5, 5],
                        [0, 0, 0],
                        [3, 3, 3]])
torch.ne(input=tensor1, other=tensor2)
torch.ne(input=tensor2, other=tensor1)
# tensor([[False, True, True],
#         [True, False, True],
#         [True, True, False]])

torch.ne(input=tensor1, other=3)
# tensor([True, True, False])

torch.ne(input=tensor2, other=3)
# tensor([[True, True, True],
#         [True, True, True],
#         [False, False, False]])

tensor1 = torch.tensor([5., 0., 3.])
tensor2 = torch.tensor([[5., 5., 5.],
                        [0., 0., 0.],
                        [3., 3., 3.]])
torch.ne(input=tensor1, other=tensor2)
# tensor([[False, True, True],
#         [True, False, True],
#         [True, True, False]])

torch.ne(input=tensor1, other=3.)
# tensor([True, True, False])

tensor1 = torch.tensor([5.+0.j, 0.+0.j, 3.+0.j])
tensor2 = torch.tensor([[5.+0.j, 5.+0.j, 5.+0.j],
                        [0.+0.j, 0.+0.j, 0.+0.j],
                        [3.+0.j, 3.+0.j, 3.+.0j]])
torch.ne(input=tensor1, other=tensor2)
# tensor([[False, True, True],
#         [True, False, True],
#         [True, True, False]])

torch.ne(input=tensor1, other=3.+0.j)
# tensor([True, True, False])

tensor1 = torch.tensor([True, False, True])
tensor2 = torch.tensor([[True, False, True],
                        [False, True, False],
                        [True, False, True]])
torch.ne(input=tensor1, other=tensor2)
# tensor([[False, False, False],
#         [True, True, True],
#         [False, False, False]])

torch.ne(input=tensor1, other=True)
# tensor([False, True, False])
登入後複製

以上是PyTorch 中的 eq 和 ne的詳細內容。更多資訊請關注PHP中文網其他相關文章!

來源:dev.to
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
作者最新文章
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板
關於我們 免責聲明 Sitemap
PHP中文網:公益線上PHP培訓,幫助PHP學習者快速成長!