編輯距離可用於詐欺偵測系統,將使用者輸入的資料(例如姓名、地址或電子郵件)與現有資料進行比較,以識別相似但可能具有詐騙的條目。
這是將此功能整合到 Django 專案中的逐步指南。
詐欺偵測系統可以比較:
使用 Django 的訊號在註冊或更新時檢查新使用者資料。
整合函式庫來計算 Levenshtein 距離或使用以下 Python 函數:
from django.db.models import Q from .models import User # Assume User is your user model def levenshtein_distance(a, b): n, m = len(a), len(b) if n > m: a, b = b, a n, m = m, n current_row = range(n + 1) # Keep current and previous row for i in range(1, m + 1): previous_row, current_row = current_row, [i] + [0] * n for j in range(1, n + 1): add, delete, change = previous_row[j] + 1, current_row[j - 1] + 1, previous_row[j - 1] if a[j - 1] != b[i - 1]: change += 1 current_row[j] = min(add, delete, change) return current_row[n]
在您的訊號或中介軟體中,將輸入的資料與資料庫中的資料進行比較,以查找相似的條目。
from django.db.models import Q from .models import User # Assume User is your user model def detect_similar_entries(email, threshold=2): users = User.objects.filter(~Q(email=email)) # Exclure l'utilisateur actuel similar_users = [] for user in users: distance = levenshtein_distance(email, user.email) if distance <= threshold: similar_users.append((user, distance)) return similar_users
在使用者註冊或更新後使用 post_save 訊號執行此檢查:
from django.db.models.signals import post_save from django.dispatch import receiver from .models import User from .utils import detect_similar_entries # Import your function @receiver(post_save, sender=User) def check_for_fraud(sender, instance, **kwargs): similar_users = detect_similar_entries(instance.email) if similar_users: print(f"Potential fraud detected for {instance.email}:") for user, distance in similar_users: print(f" - Similar email: {user.email}, Distance: {distance}")
要追蹤可疑的詐騙行為,您可以建立 FraudLog 模型:
from django.db import models from django.contrib.auth.models import User class FraudLog(models.Model): suspicious_user = models.ForeignKey(User, related_name='suspicious_logs', on_delete=models.CASCADE) similar_user = models.ForeignKey(User, related_name='similar_logs', on_delete=models.CASCADE) distance = models.IntegerField() created_at = models.DateTimeField(auto_now_add=True)
在此範本中儲存可疑符合項目:
from django.db.models import Q from .models import User # Assume User is your user model def levenshtein_distance(a, b): n, m = len(a), len(b) if n > m: a, b = b, a n, m = m, n current_row = range(n + 1) # Keep current and previous row for i in range(1, m + 1): previous_row, current_row = current_row, [i] + [0] * n for j in range(1, n + 1): add, delete, change = previous_row[j] + 1, current_row[j - 1] + 1, previous_row[j - 1] if a[j - 1] != b[i - 1]: change += 1 current_row[j] = min(add, delete, change) return current_row[n]
透過這種方法,您已經實現了基於編輯距離的詐欺偵測系統。它有助於識別相似的條目,降低建立詐欺帳戶或重複資料的風險。該系統是可擴展的,可以進行調整以滿足您專案的特定需求。
以上是在 Django 專案中實現具有 Levenshtein Distance 的詐欺偵測系統的詳細內容。更多資訊請關注PHP中文網其他相關文章!