如何將 XPath 與 BeautifulSoup 一起使用?
將 XPath 與 BeautifulSoup 結合使用
BeautifulSoup 是一個流行的 Python 庫,用於解析和操作 HTML 文件。但是,它本身並不支援 XPath 表達式。
替代方案:lxml
名為 lxml 的替代程式庫提供完整的 XPath 1.0 支援。它還具有 BeautifulSoup 相容模式,可以像 BeautifulSoup 一樣解析損壞的 HTML。要將XPath 與lxml 結合使用:
from lxml import etree from urllib import request url = "http://www.example.com/servlet/av/ResultTemplate=AVResult.html" response = request.urlopen(url) tree = etree.parse(response, etree.HTMLParser()) result_list = tree.xpath("/html/body/div/table/tbody/tr[1]/td[1]")
將CSS 選擇器與lxml 結合使用
lxml 也具有CSSSelector 支持,可以將CSSSS 語句轉換為XPath表達式。例如,要尋找類別empformbody 的td 元素:
from lxml.cssselect import CSSSelector css_selector = CSSSelector('td.empformbody') result_list = css_selector(tree)
BeautifulSoup 中的CSS 選擇器
有趣的是,BeautifulSoup 有自己的CSS 選擇器支援:
有趣的是,BeautifulSoup 有自己的CSS 選擇器soup = BeautifulSoup(html, "html.parser") result_list = soup.select('table#foobar td.empformbody')
以上是如何將 XPath 與 BeautifulSoup 一起使用?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。
