如何使用 pd.to_datetime() 有效組合 Pandas 中的日期和時間列?
將Pandas 中的日期和時間列與pd.to_datetime() 組合
在Pandas 中處理日期和時間時,通常有必要將單獨的欄位組合成單一日期時間物件。一種方法是使用 pd.to_datetime() 函數。
問題陳述
考慮一個包含「日期」和「時間」欄位的資料框,如下所示:
Date Time 01-06-2013 23:00:00 02-06-2013 01:00:00 02-06-2013 21:00:00 02-06-2013 22:00:00 02-06-2013 23:00:00 03-06-2013 01:00:00 03-06-2013 21:00:00 03-06-2013 22:00:00 03-06-2013 23:00:00 04-06-2013 01:00:00
我們的目標是將這兩個欄位合併為一個「日期和」
使用字串連接的解決方案
一種方法是將「日期」和「時間」列連接為字串,然後將結果字串轉換為使用pd.to_datetime() 的datetime 物件:
result = pd.to_datetime(df['Date'] + ' ' + df['Time'])
這會將連接的字串轉換為一系列日期時間物件。
解決方案使用format 參數
或者,您可以使用pd.to_datetime() 的format 參數來指定組合的確切格式string:
result = pd.to_datetime(df['Date'] + df['Time'], format='%m-%d-%Y %H:%M:%S')
這種方法比前一種方法更快,特別是在處理大型數據時
性能比較
使用%%timeit 魔法命令,我們可以比較兩種方法的效能:
df = pd.concat([df for _ in range(1000000)]).reset_index(drop=True) %timeit pd.to_datetime(df['Date'] + ' ' + df['Time']) %timeit pd.to_datetime(df['Date'] + df['Time'], format='%m-%d-%Y %H:%M:%S')
第二種對於大型資料集,使用格式參數的方法明顯更快。
以上是如何使用 pd.to_datetime() 有效組合 Pandas 中的日期和時間列?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。
