所以,故事是這樣的——我最近完成了莊教授的一項學校作業,其中涉及一種非常酷的演算法,稱為增量關聯馬可夫毯子(IAMB) 。現在,我沒有數據科學或統計學的背景,所以這對我來說是新領域,但我喜歡學習新東西。目標?使用 IAMB 選擇資料集中的特徵並查看它如何影響機器學習模型的效能。
我們將回顧 IAMB 演算法的基礎知識,並將其應用於 Jason Brownlee 資料集中的 Pima Indians Diabetes Dataset。該數據集追蹤女性的健康數據,包括她們是否患有糖尿病。我們將使用IAMB來找出哪些特徵(例如BMI或血糖值)對於預測糖尿病最重要。
IAMB 演算法就像一個朋友,可以幫助您清理謎團中的嫌疑犯清單 - 它是一種特徵選擇方法,旨在僅挑選出對預測目標真正重要的變數。在本例中,目標是某人是否患有糖尿病。
簡單來說,IAMB 僅選擇最相關的特徵來幫助我們避免資料集中的混亂。當您想讓事情變得簡單、提高模型效能並加快訓練時間時,這尤其方便。
資料來源: 大規模馬可夫毯子發現演算法
這就是 alpha 的用武之地。在統計學中,alpha (α) 是我們設定的閾值,用於決定什麼算是「具有統計顯著性」。作為教授指示的一部分,我使用了 0.05 的 alpha,這意味著我只想保留與目標變數隨機關聯的機率小於 5% 的特徵。因此,如果某個特徵的 p 值 小於 0.05,則表示與我們的目標有強烈的、具有統計顯著性的關聯。
透過使用這個 alpha 閾值,我們只關注最有意義的變量,忽略任何未通過「顯著性」測試的變數。它就像一個過濾器,保留最相關的特徵並剔除噪音。
設定如下:皮馬印第安人糖尿病資料集具有健康特徵(血壓、年齡、胰島素水平等)和我們的目標,結果(是否有人患有糖尿病)。
首先,我們載入資料並檢查:
這是我們的 IAMB 演算法的更新版本。我們使用 p 值 來決定保留哪些特徵,因此只選擇那些 p 值小於我們的 alpha (0.05) 的特徵。
當我運行此程序時,它為我提供了詳細的功能列表,IAMB 認為這些功能與糖尿病結果最密切相關。此列表有助於縮小我們建立模型所需的變數範圍。
一旦我們選擇了特徵,真正的測試就會將模型性能與所有特徵與IAMB選擇的特徵進行比較。為此,我使用了一個簡單的高斯樸素貝葉斯模型,因為它很簡單並且在機率方面表現良好(這與整個貝葉斯氛圍相關)。
這是訓練和測試模型的程式碼:
比較如下:
僅使用IAMB選擇的功能可以略微提高準確性和其他指標。這並不是一個巨大的飛躍,但我們用更少的功能獲得更好的性能這一事實是有希望的。另外,這意味著我們的模型不依賴「噪音」或不相關的數據。
我希望這能給 IAMB 一個友善的介紹!如果您好奇,請嘗試一下 - 它是機器學習工具箱中的一個方便的工具,您可能會在自己的專案中看到一些很酷的改進。
資料來源: 大規模馬可夫毯子發現演算法
以上是使用 IAMB 演算法進行特徵選擇:淺談機器學習的詳細內容。更多資訊請關注PHP中文網其他相關文章!