如何有效計算 2D 和 3D 空間中兩個向量之間的順時針角度?
高效計算向量之間的順時針角度
傳統上,需要利用點積計算兩個向量之間的角度,點積決定了向量之間的內角範圍為0 至180 度。然而,這種方法在確定角度與其補角之間的適當結果時存在挑戰。
是否有更直接的方法來計算順時針角度?
2D 案例
與點積與角度餘弦的關係類似,行列式與其正弦成正比。結合這種關係,我們可以計算角度如下:
dot = x1 * x2 + y1 * y2 # Dot product between [x1, y1] and [x2, y2] det = x1 * y2 - y1 * x2 # Determinant angle = atan2(det, dot) # atan2(y, x) or atan2(sin, cos)
計算出的角度的方向與座標系的方向一致。在左手座標系中,x 指向右側,y 指向下方,順時針角度將產生正值。相反,在 y 指向上方的數學座標系中,結果反映逆時針角度,這是數學中的慣例。交換輸入向量的順序會改變符號,從而可以彈性地修改結果的符號。
3D Case
在三維空間中,任意向量定義自己的軸旋轉垂直於兩者。由於此軸沒有固定方向,因此無法唯一確定旋轉角度的方向。常見的約定是指定正角度並對齊軸以適應此約定。在這種情況下,歸一化向量的點積足以進行角度計算:
dot = x1 * x2 + y1 * y2 + z1 * z2 # Between [x1, y1, z1] and [x2, y2, z2] lenSq1 = x1 * x1 + y1 * y1 + z1 * z1 lenSq2 = x2 * x2 + y2 * y2 + z2 * z2 angle = acos(dot / sqrt(lenSq1 * lenSq2))
嵌入3D 的平面
對於約束在具有已知法線的平面內的向量向量n,需要考慮特定情況。旋轉軸與n 重合,n 的方向固定軸的方向。在這種情況下,我們可以修改上面的2D 計算,將n 包含在行列式中,將其轉換為3x3 矩陣:
dot = x1 * x2 + y1 * y2 + z1 * z2 det = x1 * y2 * zn + x2 * yn * z1 + xn * y1 * z2 - z1 * y2 * xn - z2 * yn * x1 - zn * y1 * x2 angle = atan2(det, dot)
為了使此計算有效,法向量n 必須標準化為單位長度。
或者,行列式可以表示為三元組產品:
det = n · (v1 × v2)
這種方法在某些API 中可能更容易實現,並提供對底層機制的深入了解:叉積與角度的正弦值成正比,並且垂直於平面,這意味著它是一個倍數的n.因此,點積本質上是測量應用了正確符號的向量的長度。
範圍0 – 360°
大多數atan2 實現返回該範圍內的角度[-π, π](以弧度為單位)或[-180° , 180°](以度為單位)。要獲得 [0, 2π] 或 [0°, 360°] 範圍內的正角度,可以應用以下變換:
dot = x1 * x2 + y1 * y2 # Dot product between [x1, y1] and [x2, y2] det = x1 * y2 - y1 * x2 # Determinant angle = atan2(det, dot) # atan2(y, x) or atan2(sin, cos)
或者,以下表達式避免區分大小寫:
dot = x1 * x2 + y1 * y2 + z1 * z2 # Between [x1, y1, z1] and [x2, y2, z2] lenSq1 = x1 * x1 + y1 * y1 + z1 * z1 lenSq2 = x2 * x2 + y2 * y2 + z2 * z2 angle = acos(dot / sqrt(lenSq1 * lenSq2))
此校正技術不限於此特定問題,而是可以應用於涉及 atan2 的任何場景。
以上是如何有效計算 2D 和 3D 空間中兩個向量之間的順時針角度?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

C#和C 的歷史與演變各有特色,未來前景也不同。 1.C 由BjarneStroustrup在1983年發明,旨在將面向對象編程引入C語言,其演變歷程包括多次標準化,如C 11引入auto關鍵字和lambda表達式,C 20引入概念和協程,未來將專注於性能和系統級編程。 2.C#由微軟在2000年發布,結合C 和Java的優點,其演變注重簡潔性和生產力,如C#2.0引入泛型,C#5.0引入異步編程,未來將專注於開發者的生產力和雲計算。

C 適合系統編程和硬件交互,因為它提供了接近硬件的控制能力和麵向對象編程的強大特性。 1)C 通過指針、內存管理和位操作等低級特性,實現高效的系統級操作。 2)硬件交互通過設備驅動程序實現,C 可以編寫這些驅動程序,處理與硬件設備的通信。

C 和XML的未來發展趨勢分別為:1)C 將通過C 20和C 23標準引入模塊、概念和協程等新特性,提升編程效率和安全性;2)XML將繼續在數據交換和配置文件中佔據重要地位,但會面臨JSON和YAML的挑戰,並朝著更簡潔和易解析的方向發展,如XMLSchema1.1和XPath3.1的改進。

C 持續使用的理由包括其高性能、廣泛應用和不斷演進的特性。 1)高效性能:通過直接操作內存和硬件,C 在系統編程和高性能計算中表現出色。 2)廣泛應用:在遊戲開發、嵌入式系統等領域大放異彩。 3)不斷演進:自1983年發布以來,C 持續增加新特性,保持其競爭力。

C 多線程和並發編程的核心概念包括線程的創建與管理、同步與互斥、條件變量、線程池、異步編程、常見錯誤與調試技巧以及性能優化與最佳實踐。 1)創建線程使用std::thread類,示例展示瞭如何創建並等待線程完成。 2)同步與互斥使用std::mutex和std::lock_guard保護共享資源,避免數據競爭。 3)條件變量通過std::condition_variable實現線程間的通信和同步。 4)線程池示例展示瞭如何使用ThreadPool類並行處理任務,提高效率。 5)異步編程使用std::as

C 通過第三方庫(如TinyXML、Pugixml、Xerces-C )與XML交互。 1)使用庫解析XML文件,將其轉換為C 可處理的數據結構。 2)生成XML時,將C 數據結構轉換為XML格式。 3)在實際應用中,XML常用於配置文件和數據交換,提升開發效率。

C 學習者和開發者可以從StackOverflow、Reddit的r/cpp社區、Coursera和edX的課程、GitHub上的開源項目、專業諮詢服務以及CppCon等會議中獲得資源和支持。 1.StackOverflow提供技術問題的解答;2.Reddit的r/cpp社區分享最新資訊;3.Coursera和edX提供正式的C 課程;4.GitHub上的開源項目如LLVM和Boost提陞技能;5.專業諮詢服務如JetBrains和Perforce提供技術支持;6.CppCon等會議有助於職業

C 的內存管理、指針和模板是核心特性。 1.內存管理通過new和delete手動分配和釋放內存,需注意堆和棧的區別。 2.指針允許直接操作內存地址,使用需謹慎,智能指針可簡化管理。 3.模板實現泛型編程,提高代碼重用性和靈活性,需理解類型推導和特化。
