尋找演算法時間複雜度的簡單方法
對於剛開始解決問題的初學者來說,時間複雜度被認為是最困難的主題之一。在這裡,我提供時間複雜度分析備忘錄。我希望這有幫助。如果您有任何疑問,請告訴我。
時間複雜度分析備忘錄
快速參考表
O(1) - Constant time O(log n) - Logarithmic (halving/doubling) O(n) - Linear (single loop) O(n log n) - Linearithmic (efficient sorting) O(n²) - Quadratic (nested loops) O(2ⁿ) - Exponential (recursive doubling) O(n!) - Factorial (permutations)
識別模式
1. O(1) - 常數
# Look for: - Direct array access - Basic math operations - Fixed loops - Hash table lookups # Examples: arr[0] x + y for i in range(5) hashmap[key]
2. O(log n) - 對數
# Look for: - Halving/Doubling - Binary search patterns - Tree traversal by level # Examples: while n > 0: n = n // 2 left, right = 0, len(arr)-1 while left <= right: mid = (left + right) // 2
3. O(n) - 線性
# Look for: - Single loops - Array traversal - Linear search - Hash table building # Examples: for num in nums: # O(1) operation total += num for i in range(n): # O(1) operation arr[i] = i
4. O(n log n) - 線性
# Look for: - Efficient sorting - Divide and conquer - Tree operations with traversal # Examples: nums.sort() sorted(nums) merge_sort(nums)
5. O(n²) - 二次
# Look for: - Nested loops - Simple sorting - Matrix traversal - Comparing all pairs # Examples: for i in range(n): for j in range(n): # O(1) operation # Pattern finding for i in range(n): for j in range(i+1, n): # Compare pairs
6. O(2ⁿ) - 指數
# Look for: - Double recursion - Power set - Fibonacci recursive - All subsets # Examples: def fib(n): if n <= 1: return n return fib(n-1) + fib(n-2) def subsets(nums): if not nums: return [[]] result = subsets(nums[1:]) return result + [nums[0:1] + r for r in result]
常見操作時間複雜度
數組/列表操作
# O(1) arr[i] # Access arr.append(x) # Add end arr.pop() # Remove end # O(n) arr.insert(i, x) # Insert middle arr.remove(x) # Remove by value arr.index(x) # Find index min(arr), max(arr) # Find min/max
字典/集合運算
# O(1) average d[key] # Access d[key] = value # Insert key in d # Check existence d.get(key) # Get value # O(n) len(d) # Size d.keys() # Get keys d.values() # Get values
字串操作
# O(n) s + t # Concatenation s.find(t) # Substring search s.replace(old, new) # Replace ''.join(list) # Join # O(n²) potential s += char # Repeated concatenation
循環分析
單循環
# O(n) for i in range(n): # O(1) operations # O(n/2) = O(n) for i in range(0, n, 2): # Skip elements still O(n)
嵌套循環
# O(n²) for i in range(n): for j in range(n): # O(1) operations # O(n * m) for i in range(n): for j in range(m): # Different sizes # O(n²/2) = O(n²) for i in range(n): for j in range(i, n): # Triangular still O(n²)
多重循環
# O(n + m) for i in range(n): # O(1) for j in range(m): # O(1) # O(n + n²) = O(n²) for i in range(n): # O(1) for i in range(n): for j in range(n): # O(1)
遞迴分析
線性遞迴
# O(n) def factorial(n): if n <= 1: return 1 return n * factorial(n-1)
二元遞迴
# O(2ⁿ) def fibonacci(n): if n <= 1: return n return fibonacci(n-1) + fibonacci(n-2)
分而治之
# O(n log n) def mergeSort(arr): if len(arr) <= 1: return arr mid = len(arr) // 2 left = mergeSort(arr[:mid]) right = mergeSort(arr[mid:]) return merge(left, right)
優化危險訊號
隱藏循環
# String operations for c in string: newStr += c # O(n²) # List comprehension [x for x in range(n) for y in range(n)] # O(n²)
內建功能
len() # O(1) min(), max() # O(n) sorted() # O(n log n) list.index() # O(n)
分析技巧
- 計算巢狀循環
- 檢查遞迴分支
- 考慮隱藏操作
- 找分而治之
- 檢查內建函數複雜度
- 考慮平均情況與最壞情況
- 監視循環變數
- 考慮輸入約束
感謝您的閱讀,如果您覺得這篇文章對您有幫助,請按讚。乾杯!
以上是尋找演算法時間複雜度的簡單方法的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。
