使用Scipy (Python) 將經驗分佈擬合到理論分佈
簡介:
給定來自未知分佈的觀察值列表,通常需要擬合它們到理論分佈來估計機率並確定最佳擬合模型。本文探討如何使用 Scipy 在 Python 中實現此類分析,並提供了將各種分佈擬合到厄爾尼諾資料集的詳細範例。
方法:
確定對於最佳擬合分佈,我們可以使用觀測資料的直方圖與擬合分佈的機率密度函數(PDF)之間的誤差平方和(SSE)。 SSE 最低的分佈被認為是最合適的。
實作:
對於 Scipy 分佈清單中的每個分佈:
其他功能:
範例:
使用El Niño 資料集,我們對資料進行多種分佈擬合,並根據SSE 確定最佳擬合。結果顯示“genextreme”分佈提供了最佳擬合。
程式碼:
提供的程式碼包括上述步驟,並在中顯示擬合分佈和 PDF互動式繪圖。
結論:
利用利用Python 中的Scipy 庫,我們可以輕鬆地將經驗分佈與理論分佈進行擬合,並基於SSE 確定最佳擬合模型。該技術允許採用數據驅動的方法進行建模和機率估計。
以上是Scipy 如何幫助確定經驗數據的最佳擬合理論分佈?的詳細內容。更多資訊請關注PHP中文網其他相關文章!