如何有效計算兩個 Pandas DataFrame 欄位之間的小時和分鐘時間差?
計算兩個Pandas 欄位之間的時間差(以小時和分鐘為單位)
確定DataFrame 中兩個日期欄位之間的時間差對於各種應用。但是,使用減法運算子的標準方法會產生包含天數的 datetime.timedelta 物件。要將其轉換為小時和分鐘,我們可以利用 as_type 方法。
假設我們的 DataFrame 中有兩列,fromdate 和 todate,分別代表開始時間和結束時間。使用減法運算符,我們得到的時間差如下:
import pandas as pd data = {'todate': [pd.Timestamp('2014-01-24 13:03:12.050000'), pd.Timestamp('2014-01-27 11:57:18.240000'), pd.Timestamp('2014-01-23 10:07:47.660000')], 'fromdate': [pd.Timestamp('2014-01-26 23:41:21.870000'), pd.Timestamp('2014-01-27 15:38:22.540000'), pd.Timestamp('2014-01-23 18:50:41.420000')]} df = pd.DataFrame(data) df['diff'] = df['fromdate'] - df['todate']
這給我們提供了以下輸出,其中包括天數:
todate fromdate diff 0 2014-01-24 13:03:12.050 2014-01-26 23:41:21.870 2 days 10:38:09.820000 1 2014-01-27 11:57:18.240 2014-01-27 15:38:22.540 0 days 03:41:04.300000 2 2014-01-23 10:07:47.660 2014-01-23 18:50:41.420 0 days 08:42:53.760000
將時差轉換為僅小時和分鐘,我們可以使用as_type 方法將datetime.timedelta物件轉換為timedelta64 具有特定測量單位的物件:
df['diff_hours'] = df['diff'].astype('timedelta64[h]')
這為我們提供了輸出:
todate fromdate diff diff_hours 0 2014-01-24 13:03:12.050 2014-01-26 23:41:21.870 2 days 10:38:09.820 58 1 2014-01-27 11:57:18.240 2014-01-27 15:38:22.540 0 days 03:41:04.300 3 2 2014-01-23 10:07:47.660 2014-01-23 18:50:41.420 0 days 08:42:53.760 8
如您所見, diff_hours 欄位現在包含兩個日期之間的時差(以小時為單位)。
以上是如何有效計算兩個 Pandas DataFrame 欄位之間的小時和分鐘時間差?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。
