首頁 > 後端開發 > Python教學 > 如何使用 witai 創建語音翻譯機器人

如何使用 witai 創建語音翻譯機器人

Susan Sarandon
發布: 2024-12-02 08:29:10
原創
465 人瀏覽過

Comment créer un bot de traduction vocale avec witai

在我們的全球化世界中,跨越語言界線的溝通比以往任何時候都更加重要。在這篇文章中,我們將探討如何實施這項技術,讓溝通變得更包容、方便每個人。

程式碼可以在這裡取得
在我的 github 上

首先要做的是安裝相依性

blinker==1.8.2
cachetools==5.5.0
certifi==2024.8.30
chardet==3.0.4
charset-normalizer==3.4.0
click==8.1.7
colorama==0.4.6
Flask==3.0.3
google-api-core==2.22.0
google-auth==2.36.0
google-cloud-texttospeech==2.21.0
googleapis-common-protos==1.65.0
googletrans==4.0.0rc1
grpcio==1.67.1
grpcio-status==1.67.1
gTTS==2.5.3
h11==0.9.0
h2==3.2.0
hpack==3.0.0
hstspreload==2024.11.1
httpcore==0.9.1
httpx==0.13.3
hyperframe==5.2.0
idna==2.10
itsdangerous==2.2.0
Jinja2==3.1.4
Levenshtein==0.26.1
MarkupSafe==3.0.2
playsound==1.2.2
prompt_toolkit==3.0.48
proto-plus==1.25.0
protobuf==5.28.3
pyasn1==0.6.1
pyasn1_modules==0.4.1
PyAudio==0.2.14
python-Levenshtein==0.26.1
RapidFuzz==3.10.1
requests==2.32.3
rfc3986==1.5.0
rsa==4.9
sniffio==1.3.1
SpeechRecognition==3.11.0
typing_extensions==4.12.2
urllib3==2.2.3
wcwidth==0.2.13
Werkzeug==3.1.2
wit==6.0.1
登入後複製

音訊到文字轉換

from gtts import gTTS
import playsound
import os

def speak_translation(text, lang):
    tts = gTTS(text=text, lang=lang)
    filename = "translation.mp3"
    tts.save(filename)
    playsound.playsound(filename)
    os.remove(filename)
登入後複製

Google雲端文字語音

from google.cloud import texttospeech

def synthesize_speech(text, language_code="wo-WO", voice_name="wo-WO-Standard-A", output_file="output.mp3"):
    client = texttospeech.TextToSpeechClient()

    input_text = texttospeech.SynthesisInput(text=text)

    # Configurez la voix pour le Wolof
    voice = texttospeech.VoiceSelectionParams(
        language_code=language_code,
        name=voice_name,
        ssml_gender=texttospeech.SsmlVoiceGender.NEUTRAL,
    )

    # Paramètres audio
    audio_config = texttospeech.AudioConfig(
        audio_encoding=texttospeech.AudioEncoding.MP3
    )

    # Synthèse vocale
    response = client.synthesize_speech(
        input=input_text, voice=voice, audio_config=audio_config
    )

    # Sauvegarder le fichier audio
    with open(output_file, "wb") as out:
        out.write(response.audio_content)
        print(f"Audio content written to file {output_file}")

# Utilisez cette fonction avec votre texte
synthesize_speech("Bonjour, je teste la traduction en Wolof.", "wo-WO")
登入後複製

翻譯

from googletrans import Translator

def translate_text(text, target_lang):
    try:
        translator = Translator()
        translation = translator.translate(text, dest=target_lang)
        print(f"Traduction : {translation.text}")
        return translation.text
    except Exception as e:
        print(f"Erreur lors de la traduction : {e}")
        return "Traduction non disponible"
登入後複製

語音偵測

import speech_recognition as sr

def record_audio():
    recognizer = sr.Recognizer()
    with sr.Microphone() as source:
        print("Parlez maintenant...")
        audio = recognizer.listen(source)
        try:
            text = recognizer.recognize_google(audio, language="fr-FR")
            print(f"Vous avez dit : {text}")
            return text
        except sr.UnknownValueError:
            print("Désolé, je n'ai pas compris.")
        except sr.RequestError as e:
            print(f"Erreur de service : {e}")
登入後複製

Witai 參數:
您必須前往 Meta API (Facebook) 來建立您的代幣

import requests

WIT_AI_TOKEN = 'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'

def send_to_wit(text):
    headers = {'Authorization': f'Bearer {WIT_AI_TOKEN}'}
    response = requests.get(f'https://api.wit.ai/message?v=20230414&q={text}', headers=headers)
    return response.json()
登入後複製

主檔

from flask import Flask, request, jsonify
from convertion_audio_to_text import speak_translation
from translation import translate_text
from voice_detection import record_audio
from witai_params import send_to_wit
import Levenshtein

app = Flask(__name__)

# Langues disponibles
AVAILABLE_LANGUAGES = {
    "sw": "Swahili",
    "wo": "Wolof",
    "fon": "Fon",
    "en": "Anglais",
    "fr": "Français"
}

def calculate_score(reference_text, user_text):
    similarity = Levenshtein.ratio(reference_text.lower(), user_text.lower()) * 100
    return round(similarity, 2)

@app.route('/available_languages', methods=['GET'])
def available_languages():
    """Retourne les langues disponibles pour la traduction."""
    return jsonify(AVAILABLE_LANGUAGES)


@app.route('/process_audio', methods=['POST'])
def process_audio():
    """Traite l'audio, traduit le texte et évalue la prononciation."""
    try:
        # Étape 1 : Récupérer la langue cible depuis la requête
        target_lang = request.json.get('target_lang')

        if not target_lang:
            return jsonify({"error": "Paramètre 'target_lang' manquant"}), 400

        if target_lang not in AVAILABLE_LANGUAGES:
            return jsonify({
                "error": f"Langue cible '{target_lang}' non supportée.",
                "available_languages": AVAILABLE_LANGUAGES  # Retourner la liste des langues disponibles
            }), 400

        # Étape 2 : Traduire le texte initial
        text = record_audio()
        if not text:
            return jsonify({"error": "No audio detected or transcription failed"}), 400

        wit_response = send_to_wit(text)
        print("Wit.ai Response:", wit_response)

        translation = translate_text(text, target_lang)
        speak_translation(translation, lang=target_lang)

        # Étape 3 : Boucle de répétition pour évaluer la prononciation
        score = 0
        while score < 80:
            repeat_text = record_audio()
            if not repeat_text:
                return jsonify({"error": "No repeated audio detected"}), 400

            score = calculate_score(translation, repeat_text)
            if score >= 80:
                message = "Bravo! Félicitations, vous êtes un génie!"
                return jsonify({
                    "original_text": text,
                    "wit_response": wit_response,
                    "translated_text": translation,
                    "repeated_text": repeat_text,
                    "score": score,
                    "message": message
                }), 200
            elif score < 45:
                message = "Votre score est faible, améliorez-vous en vous entraînant."
            else:
                message = "Pas mal! Vous pouvez encore améliorer."

            return jsonify({
                "translated_text": translation,
                "repeated_text": repeat_text,
                "score": score,
                "message": message,
                "retry": True
            })

    except Exception as e:
        return jsonify({"error": str(e)}), 500


if __name__ == '__main__':
    app.run(debug=True)


"""
tu peux tester avec ce code dans le navigateur, tu decommente, puis tu le met la ou il faut
@app.route('/process_audio', methods=['GET', 'POST'])
def process_audio():
    if request.method == 'GET':
        return jsonify({"message": "Utilisez une requête POST pour traiter l'audio."})

    # Continue avec la logique POST
    try:
        text = record_audio()
        if not text:
            return jsonify({"error": "No audio detected or transcription failed"}), 400

        wit_response = send_to_wit(text)
        print("Wit.ai Response:", wit_response)

        target_lang = request.json.get('target_lang', 'sw')
        translation = translate_text(text, target_lang)

        speak_translation(translation, lang=target_lang)

        return jsonify({
            "original_text": text,
            "wit_response": wit_response,
            "translated_text": translation
        }), 200
    except Exception as e:
        return jsonify({"error": str(e)}), 500
"""
登入後複製

如今,設計機器人來解決我們日常生活中的複雜問題變得越來越容易。不過,這並不排除自學語言的重要性。使用 BotAI 等技術進行即時語音翻譯應該主要是為了豐富我們在複雜環境中的互動。透過將這些工具與個人語言學習結合,我們可以促進更有效的溝通,同時促進個人語言財富。

程式碼可以在這裡取得
在我的 github 上

以上是如何使用 witai 創建語音翻譯機器人的詳細內容。更多資訊請關注PHP中文網其他相關文章!

來源:dev.to
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
作者最新文章
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板