電腦視覺資料集 (3)
請我喝杯咖啡☕
*備忘錄:
- 我的貼文解釋了 MNIST、EMNIST、QMNIST、ETLCDB、Kuzushiji 和 Moving MNIST。
- 我的貼文解釋了 Fashion-MNIST、Caltech 101、Caltech 256、CelebA、CIFAR-10 和 CIFAR-100。
(1) 牛津-IIIT 寵物 (2012):
- 有 7,349 張貓和狗圖像,每個圖像都連接到來自 37 個類別的標籤:
*備註:
- 每個類別大約有 200 張影像。
- 3,680 用於訓練或訓練和驗證,3,669 用於測試。
- 是 PyTorch 中的 OxfordIIITPet()。
(2)牛津102花(2008):
- 有 8,189 個花卉圖像(1,020 個用於訓練,1,020 個用於驗證,6,149 個用於測試),有 102 個類別(類)。 *每班有 40 至 258 張圖片。
- 是 PyTorch 中的 Flowers102()。
(3) 史丹佛汽車 (2013):
- 有 16185 個汽車圖像(8,144 個用於火車,8,041 個用於測試),196 個類別。
- 是 PyTorch 中的StanfordCars()。
(4) Places365(2017):
- 地點資料庫中包含434 個場景類別(類別)中的365 個場景類別(類別)的場景影像,其中有Places365-Standard、Places365-Challenge 和Places-Extra69 如您所見:
*備註:
- Places365-Standard 擁有2,168,460 張圖像(1,803,460 張用於訓練,36,500 張用於驗證,328,500 張用於測試),地點資料庫中有434 個類別(類別),其中包含365 個類別(類別)類)。 *驗證集中每個類別(類別)有 50 張影像,測試集中每個類別(類別)有 900 張影像。
- Places365-Challenge 有8,391,628 個圖像(8,026,628 個用於訓練,36,500 個用於驗證,328,500 個用於測試),為Places365-Standard
- Places-Extra69 擁有 105,321 張圖像(98,721 張用於訓練,6,600 張用於測試),以及 Places 資料庫中 434 個類別(類別)中額外的 69 個類別(類別)。 *目前無法下載。
是 PyTorch 中的 Places365()。
- 從 flickr 取得 8,091 張圖像,每張圖像都有 5 個不同的標題。
- 是 PyTorch 中的 Flickr8k(),但它沒有解釋如何為其設定資料集,所以我不知道如何用它載入資料集。
(6) Flickr30k(2015):
- 從 flickr 取得了 31,784 張圖像,每張圖像都有 5 個不同的標題。
- 是 PyTorch 中的 Flickr8k(),但它沒有解釋如何為其設定資料集,所以我不知道如何用它載入資料集。
以上是電腦視覺資料集 (3)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。
