如何將 CSV 資料導入 Pandas DataFrame?
將 CSV 資料匯入為 Pandas DataFrame
將資料載入到 Pandas DataFrame 中是資料分析和操作的常見任務。實現此目的最直接的方法之一是從 CSV 檔案讀取資料。以下是實現此目的的方法:
使用 pandas.read_csv
pandas.read_csv 函數提供了將 CSV 檔案讀入 Pandas DataFrame 的便捷方法。考慮以下CSV 檔案:
Date,"price","factor_1","factor_2" 2012-06-11,1600.20,1.255,1.548 2012-06-12,1610.02,1.258,1.554 2012-06-13,1618.07,1.249,1.552 2012-06-14,1624.40,1.253,1.556 2012-06-15,1626.15,1.258,1.552 2012-06-16,1626.15,1.263,1.558 2012-06-17,1626.15,1.264,1.572
要將這些資料匯入到DataFrame 中,我們可以使用下列Python 程式碼:
import pandas as pd # Specify the file path file_path = "data.csv" # Read the CSV file into a DataFrame df = pd.read_csv(file_path) # Print the DataFrame print(df)
此程式碼將使用下列內容建立一個Pandas DataFrame結構:
Date | price | factor_1 | factor_2 |
---|---|---|---|
2012-06-11 | 1600.20 | 1.255 | 1.548 |
2012-06-12 | 1610.02 | 1.258 | 1.554 |
2012-06-13 | 1618.07 | 1.249 | 1.552 |
2012-06-14 | 1624.40 | 1.253 | 1.556 |
2012-06-15 | 1626.15 | 1.258 | 1.552 |
2012-06-16 | 1626.15 | 1.263 | 1.558 |
2012-06-17 | 1626.15 | 1.264 | 1.572 |
以上是如何將 CSV 資料導入 Pandas DataFrame?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python在科學計算中的應用包括數據分析、機器學習、數值模擬和可視化。 1.Numpy提供高效的多維數組和數學函數。 2.SciPy擴展Numpy功能,提供優化和線性代數工具。 3.Pandas用於數據處理和分析。 4.Matplotlib用於生成各種圖表和可視化結果。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優
