如何在Python中有效率地選擇特定日期範圍內的DataFrame行?
選擇日期範圍內的 DataFrame 行
在 Python 中,DataFrame 是用於儲存和操作表格資料的強大工具。一項常見的任務是根據指定的日期範圍過濾行。為此,我們有以下選項:
方法 1:使用布林遮罩
如果您的 DataFrame 包含 datetime64[ns]資料類型的日期列,您可以建立布林遮罩來選擇落在所需範圍內的行range:
# Ensure date column is a datetime64 series df['date'] = pd.to_datetime(df['date']) # Create a boolean mask mask = (df['date'] > start_date) & (df['date'] <= end_date) # Select the sub-DataFrame sub_df = df.loc[mask]
方法二:設定DatetimeIndex
另一個有效的方法是將日期列設定為DataFrame的索引,建立一個DatetimeIndex:
df = df.set_index(['date']) # Select rows using index slicing sub_df = df.loc[start_date:end_date]
此方法對於頻繁的基於日期的選擇特別有用,因為與使用布林遮罩。
範例:
考慮以下DataFrame:
>>> df value date 0 0.2 2021-06-01 1 0.3 2021-06-05 2 0.4 2021-06-10 3 0.5 2021-06-15
要選擇2021 年6 月的行,我們可以使用任一方法:
方法1:布爾值Mask
mask = (df['date'] > '2021-06-01') & (df['date'] <= '2021-06-30') sub_df = df.loc[mask]
方法2:DatetimeIndex
df = df.set_index(['date']) sub_df = df.loc['2021-06-01':'2021-06-30']
兩種方法都會返回以下子DataFrame:
>>> sub_df value date 0 0.2 2021-06-01 1 0.3 2021-06-05 2 0.4 2021-06-10 3 0.5 2021-06-15
以上是如何在Python中有效率地選擇特定日期範圍內的DataFrame行?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。
