PyTorch 中的 CIFAR
請我喝杯咖啡☕
*我的貼文解釋了 CIFAR-100。
CIFAR100()可以使用CIFAR-100資料集,如下所示:
*備忘錄:
- 第一個參數是 root(必要類型:str 或 pathlib.Path)。 *絕對或相對路徑都是可能的。
- 第二個參數是 train(Optional-Default:True-Type:bool)。 *如果為 True,則使用訓練資料(50,000 張圖像),如果為 False,則使用測試資料(10,000 張圖像)。
- 第三個參數是transform(Optional-Default:None-Type:callable)。
- 第四個參數是 target_transform(Optional-Default:None-Type:callable)。
- 第五個參數是 download(可選-預設:False-類型:bool):
*備註:
- 如果為 True,則從網路下載資料集並解壓縮(解壓縮)到根目錄。
- 如果為 True 並且資料集已下載,則將其提取。
- 如果為 True 並且資料集已下載並提取,則不會發生任何事情。
- 如果資料集已經下載並提取,則應該為 False,因為它速度更快。
- 您可以從這裡手動下載並提取資料集(cifar-100-python.tar.gz)到data/cifar-100-python/。
from torchvision.datasets import CIFAR100 train_data = CIFAR100( root="data" ) train_data = CIFAR100( root="data", train=True, transform=None, target_transform=None, download=False ) test_data = CIFAR100( root="data", train=False ) len(train_data), len(test_data) # (50000, 10000) train_data # Dataset CIFAR100 # Number of datapoints: 50000 # Root location: data # Split: Train train_data.root # 'data' train_data.train # True print(train_data.transform) # None print(train_data.target_transform) # None train_data.download # <bound method CIFAR10.download of Dataset CIFAR100 # Number of datapoints: 50000 # Root location: data # Split: Train> len(train_data.classes), train_data.classes # (100, # ['apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', # 'bicycle', 'bottle', 'bowl', ..., 'wolf', 'woman', 'worm'] train_data[0] # (<PIL.Image.Image image mode=RGB size=32x32>, 19) train_data[1] # (<PIL.Image.Image image mode=RGB size=32x32>, 29) train_data[2] # (<PIL.Image.Image image mode=RGB size=32x32>, 0) train_data[3] # (<PIL.Image.Image image mode=RGB size=32x32>, 11) train_data[4] # (<PIL.Image.Image image mode=RGB size=32x32>, 1) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, (im, lab) in enumerate(data, start=1): plt.subplot(2, 5, i) plt.title(label=lab) plt.imshow(X=im) if i == 10: break plt.tight_layout() plt.show() show_images(data=train_data, main_title="train_data") show_images(data=test_data, main_title="test_data")
以上是PyTorch 中的 CIFAR的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python和C 各有優勢,選擇應基於項目需求。 1)Python適合快速開發和數據處理,因其簡潔語法和動態類型。 2)C 適用於高性能和系統編程,因其靜態類型和手動內存管理。

Python在Web開發中的關鍵應用包括使用Django和Flask框架、API開發、數據分析與可視化、機器學習與AI、以及性能優化。 1.Django和Flask框架:Django適合快速開發複雜應用,Flask適用於小型或高度自定義項目。 2.API開發:使用Flask或DjangoRESTFramework構建RESTfulAPI。 3.數據分析與可視化:利用Python處理數據並通過Web界面展示。 4.機器學習與AI:Python用於構建智能Web應用。 5.性能優化:通過異步編程、緩存和代碼優
