首頁 > 後端開發 > Python教學 > PyTorch 中的 OxfordIIITPet

PyTorch 中的 OxfordIIITPet

DDD
發布: 2024-12-22 18:42:14
原創
921 人瀏覽過

請我喝杯咖啡☕

*我的貼文解釋了 Oxford-IIIT Pet。

OxfordIIITPet()可以使用Oxford-IIIT Pet資料集,如下所示:

*備忘錄:

  • 第一個參數是 root(必要類型:str 或 pathlib.Path)。 *絕對或相對路徑都是可能的。
  • 第二個參數是 split(可選-預設:"train"-類型:str)。 *可以設定「trainval」(3,680張圖片)或「test」(3,669張圖片)。
  • 第三個參數是 target_types(可選-預設:「attr」-類型:str 或 str 清單): *備註:
    • 可以為其設定「category」、「binary-category」和/或「segmentation」: *備註:
    • 「category」是 37 個類別的標籤。
    • 「binary-category」用於cat(0)或dog(1)的標籤。
    • “segmentation”用於分割三圖影像。
    • 也可以為其設定空元組或清單。
    • 可以設定多個相同的值。
    • 如果值的順序不同,則其元素的順序也會不同。
  • 第四個參數是transform(Optional-Default:None-Type:callable)。
  • 第 5 個參數是 target_transform(Optional-Default:None-Type:callable)。
  • 第 6 個參數是 download(可選-預設:False-類型:bool): *備註:
    • 如果為 True,則從網路下載資料集並解壓縮(解壓縮)到根目錄。
    • 如果為 True 並且資料集已下載,則將其提取。
    • 如果為 True 並且資料集已下載並提取,則不會發生任何事情。
    • 如果資料集已經下載並提取,則應該為 False,因為它速度更快。
    • 您可以從此處手動下載並提取資料集(images.tar.gz 和annotations.tar.gz)到 data/oxford-iiit-pet/。
  • 關於訓練影像索引的類別(類)標籤,阿比西尼亞(0)為0~49,美國鬥牛犬(1)為50~99, 美國比特鬥牛犬(2)是100~149, 巴吉度獵犬(3)為150~199,小獵犬(4)為200~249,孟加拉虎(5)為250~299, 伯曼貓(6)為300~349, 孟買(7)為350~398、拳師犬(8)為399~448、英國短毛貓(9)為449~498等
  • 關於測試影像索引的類別(類別)標籤,阿比西尼亞(0)為0~97,美國鬥牛犬(1)為98~197, 美國比特鬥牛犬(2)是198~297, 巴吉度獵犬(3)為298~397,小獵犬(4)為398~497,孟加拉虎(5)為498~597, 伯曼貓(6)為598~697, 孟買(7)為698~785,拳師犬(8)為786~884,英國短毛貓(9)為885~984等。
from torchvision.datasets import OxfordIIITPet

trainval_cate_data = OxfordIIITPet(
    root="data"
)

trainval_cate_data = OxfordIIITPet(
    root="data",
    split="trainval",
    target_types="category",
    transform=None,
    target_transform=None,
    download=False
)

trainval_bincate_data = OxfordIIITPet(
    root="data",
    split="trainval",
    target_types="binary-category"
)

test_seg_data = OxfordIIITPet(
    root="data",
    split="test",
    target_types="segmentation"
)

test_empty_data = OxfordIIITPet(
    root="data",
    split="test",
    target_types=[]
)

test_all_data = OxfordIIITPet(
    root="data",
    split="test",
    target_types=["category", "binary-category", "segmentation"]
)

len(trainval_cate_data), len(trainval_bincate_data)
# (3680, 3680)

len(test_seg_data), len(test_empty_data), len(test_all_data)
# (3669, 3669, 3669)

trainval_cate_data
# Dataset OxfordIIITPet
#     Number of datapoints: 3680
#     Root location: data

trainval_cate_data.root
# 'data'

trainval_cate_data._split
# 'trainval'

trainval_cate_data._target_types
# ['category']

print(trainval_cate_data.transform)
# None

print(trainval_cate_data.target_transform)
# None

trainval_cate_data._download
# <bound method OxfordIIITPet._download of Dataset OxfordIIITPet
#     Number of datapoints: 3680
#     Root location: data>

len(trainval_cate_data.classes), trainval_cate_data.classes
# (37,
#  ['Abyssinian', 'American Bulldog', 'American Pit Bull Terrier',
#   'Basset Hound', 'Beagle', 'Bengal', 'Birman', 'Bombay', 'Boxer',
#   'British Shorthair', ..., 'Wheaten Terrier', 'Yorkshire Terrier'])

trainval_cate_data[0]
# (<PIL.Image.Image image mode=RGB size=394x500>, 0)

trainval_cate_data[1]
# (<PIL.Image.Image image mode=RGB size=450x313>, 0)

trainval_cate_data[2]
# (<PIL.Image.Image image mode=RGB size=500x465>, 0)

trainval_bincate_data[0]
# (<PIL.Image.Image image mode=RGB size=394x500>, 0)

trainval_bincate_data[1]
# (<PIL.Image.Image image mode=RGB size=450x313>, 0)

trainval_bincate_data[2]
# (<PIL.Image.Image image mode=RGB size=500x465>, 0)

test_seg_data[0]
# (<PIL.Image.Image image mode=RGB size=300x225>,
#  <PIL.PngImagePlugin.PngImageFile image mode=L size=300x225>)

test_seg_data[1]
# (<PIL.Image.Image image mode=RGB size=300x225>,
#  <PIL.PngImagePlugin.PngImageFile image mode=L size=300x225>)

test_seg_data[2]
# (<PIL.Image.Image image mode=RGB size=229x300>,
#  <PIL.PngImagePlugin.PngImageFile image mode=L size=229x300>)

test_empty_data[0]
# (<PIL.Image.Image image mode=RGB size=300x225>, None)

test_empty_data[1]
# (<PIL.Image.Image image mode=RGB size=300x225>, None)

test_empty_data[2]
# (<PIL.Image.Image image mode=RGB size=229x300>, None)

test_all_data[0]
# (<PIL.Image.Image image mode=RGB size=300x225>,
#  (0, 0, <PIL.PngImagePlugin.PngImageFile image mode=L size=300x225>))

test_all_data[1]
# (<PIL.Image.Image image mode=RGB size=300x225>,
#  (0, 0, <PIL.PngImagePlugin.PngImageFile image mode=L size=300x225>))

test_all_data[2]
# (<PIL.Image.Image image mode=RGB size=229x300>,
#  (0, 0, <PIL.PngImagePlugin.PngImageFile image mode=L size=229x300>))

import matplotlib.pyplot as plt

def show_images(data, ims, main_title=None):
    if len(data._target_types) == 0:      
        plt.figure(figsize=(12, 6))
        plt.suptitle(t=main_title, y=1.0, fontsize=14)
        for i, j in enumerate(ims, start=1):
            plt.subplot(2, 5, i)
            im, _ = data[j]
            plt.imshow(X=im)
    elif len(data._target_types) == 1:
        if data._target_types[0] == "category":
            plt.figure(figsize=(12, 6))
            plt.suptitle(t=main_title, y=1.0, fontsize=14)
            for i, j in enumerate(ims, start=1):
                plt.subplot(2, 5, i)
                im, cate = data[j]
                plt.title(label=cate)
                plt.imshow(X=im)
        elif data._target_types[0] == "binary-category":
            plt.figure(figsize=(12, 6))
            plt.suptitle(t=main_title, y=1.0, fontsize=14)
            for i, j in enumerate(ims, start=1):
                plt.subplot(2, 5, i)
                im, bincate = data[j]
                plt.title(label=bincate)
                plt.imshow(X=im)
        elif data._target_types[0] == "segmentation":
            plt.figure(figsize=(12, 12))
            plt.suptitle(t=main_title, y=1.0, fontsize=14)
            for i, j in enumerate(ims, start=1):
                im, seg = data[j]
                if 1 <= i and i <= 5:
                    plt.subplot(4, 5, i)
                    plt.imshow(X=im)
                    plt.subplot(4, 5, i+5)
                    plt.imshow(X=seg)
                if 6 <= i and i <= 10:
                    plt.subplot(4, 5, i+5)
                    plt.imshow(X=im)
                    plt.subplot(4, 5, i+10)
                    plt.imshow(X=seg)
    elif len(data._target_types) == 3:
        plt.figure(figsize=(12, 12))
        plt.suptitle(t=main_title, y=1.0, fontsize=14)
        for i, j in enumerate(ims, start=1):
            im, (cate, bincate, seg) = data[j]
            if 1 <= i and i <= 5:
                plt.subplot(4, 5, i)
                plt.title(label=f"{cate}, {bincate}")
                plt.imshow(X=im)
                plt.subplot(4, 5, i+5)
                plt.imshow(X=seg)
            if 6 <= i and i <= 10:
                plt.subplot(4, 5, i+5)
                plt.title(label=f"{cate}, {bincate}")
                plt.imshow(X=im)
                plt.subplot(4, 5, i+10)
                plt.imshow(X=seg)
    plt.tight_layout(h_pad=3.0)
    plt.show()

train_ims = (0, 1, 2, 50, 100, 150, 200, 250, 300, 350)
test_ims = (0, 1, 2, 98, 198, 298, 398, 498, 598, 698)

show_images(data=trainval_cate_data, ims=train_ims,
            main_title="trainval_cate_data")
show_images(data=trainval_bincate_data, ims=train_ims, 
            main_title="trainval_bincate_data")
show_images(data=test_seg_data, ims=test_ims,
            main_title="test_seg_data")
show_images(data=test_empty_data, ims=test_ims,
            main_title="test_empty_data")
show_images(data=test_all_data, ims=test_ims,
            main_title="test_all_data")
登入後複製

OxfordIIITPet in PyTorch

OxfordIIITPet in PyTorch

OxfordIIITPet in PyTorch

OxfordIIITPet in PyTorch

OxfordIIITPet in PyTorch

以上是PyTorch 中的 OxfordIIITPet的詳細內容。更多資訊請關注PHP中文網其他相關文章!

來源:dev.to
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板