製作我的第一個 AI 聊天應用程式:從 DevOps 學習透過 AI 與 Ollama 集成
我用作來源的部落格:
https://dev.to/devopspass-ai/workshop-make-your-first-ai-app-in-a-few-clicks-with-pythonollamallama3-31ib
發現 DevOps Pass AI 關於使用 Ollama 建立 AI 應用程式的指南後,我決定探索它的工作原理並記錄我的問題和學習過程。這是我在建立第一個 AI 聊天應用程式時發現的內容。
我最初的問題
當我第一次閱讀教學時,我想到了幾個問題:
- 為什麼要使用 Ollama 而不是直接 API 呼叫 OpenAI 或其他服務?
- 是什麼讓 Llama3 成為本地 AI 模型的好選擇?
- 聊天記錄持久化是如何運作的,為什麼它很重要?
讓我們回顧一下我在探索每個方面時學到的東西。
了解本地 AI 設定
我注意到的第一個有趣的事情是透過 Ollama 使用本地人工智慧。經過詢問和測試,我發現了一些主要優點:
- 無 API 費用或使用限制
- 完全隱私,因為一切都在本地運行
- 初始模型下載後不依賴網路
- 與 Llama3 的出色表現令人驚訝
設定過程很簡單:(Bash)
ollama 發球
llama 拉 llama3
我最初擔心 4.7GB 型號大小,但在我的連接上下載速度很快,即使在我的普通開發機器上也能順利運行。
探索聊天應用程式
最有趣的部分是聊天應用程式是多麼簡單但功能強大。讓我們來分解一下我對每個組件的了解:
聊天記錄管理
我特別好奇聊天記錄是如何運作的。程式碼使用了一種巧妙的方法:(python)
file_path = sys.argv[1] '.json'
if os.path.exists(file_path):
with open(file_path, 'r') as f:
messages = json.load(f)
這表示每個聊天會話都維護自己的歷史文件。我透過啟動多個對話來測試這一點:(Bash)
python app1.pycoding_help
python app1.py devops_queries
bash複製python app1.pycoding_help
python app1.py devops_queries
每個人都創建了自己的 JSON 文件,使對話保持獨立且持久。
AI 響應處理
引起我注意的一件事是流響應實作:
pythonCopystream = ollama.chat(
model='llama3',
訊息=訊息,
流=真,
)
對於流中的區塊:
print(chunk['message']['content'], end='',lush=True)
這給對話帶來了更自然的感覺,因為回應像人類打字一樣逐漸出現,而不是一次性全部出現。
測試不同的用例
我嘗試了各種類型的問題來了解模型的功能:
技術問題
複製>>如何設定 Kubernetes 監控?
回覆詳細且技術準確。
程式碼產生
複製>>寫一個Python函數來監控CPU使用率
它提供了工作代碼範例和解釋。
上下文對話
複製>>最佳實務是什麼?
該模型有效地保留了先前問題的上下文。
我對性能的了解
關於本地運行人工智慧的一些有趣的觀察:
啟動後第一次回應稍慢(模型預熱)
後續回覆很快
回應品質與許多基於雲端的服務相符
無需擔心節流或速率限制
我還有疑問
建立並測試應用程式後,我很好奇:
如何針對特定用例微調模型?
我們可以優化模型以獲得更快的回應嗎?
處理錯誤或意外回應的最佳方法是什麼?
結論:值得建造嗎?
嘗試此設定後,我想說如果您滿足以下條件,那麼絕對值得嘗試:
想要了解 AI 整合
需要注重隱私的人工智慧解決方案
對建立自訂 AI 工具感興趣
希望避免 AI 服務的 API 成本
學習曲線出奇的平緩,對於本地設定來說結果令人印象深刻。
社區問題
有其他人建置過類似的本地人工智慧應用程式嗎?
您還嘗試過 Ollama 的其他哪些款式?
您如何處理 AI 應用程式中的錯誤情況?
請在評論中告訴我 - 我特別有興趣了解不同的用例和改進!
以上是製作我的第一個 AI 聊天應用程式:從 DevOps 學習透過 AI 與 Ollama 集成的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。
