首頁 後端開發 Python教學 探索性資料分析:挖掘待辦事項

探索性資料分析:挖掘待辦事項

Dec 23, 2024 pm 05:50 PM

六三八的鼓舞人心的故事中,他們的任務的第一步是評估和整理大量積壓的未投遞郵件。這些高聳入雲的堆疊必須先進行分類和理解,然後才能取得任何進展。在現代機器學習的世界中,這個初始階段類似於探索性資料分析 (EDA)。

對於本系列,我們將使用 CSV 資料集複製此過程,其中每一行包含一個類別(例如「技術」、「商業」)以及與其關聯的文字。類別充當標籤,指示每段文字所屬的位置。用於資料操作的 Pandas、用於視覺化的 Matplotlib、用於文字洞察的 WordCloud、用於標記分析的 Tiktoken 以及用於文字處理的 NLTK 等工具將幫助我們理解我們的資料集。

在這一步驟中,我們將:

  1. 載入資料並檢查其結構。

  2. 辨識可能影響模型表現的缺失或不一致的值。

  3. 探索類別分佈以了解標籤之間的平衡。

  4. 視覺化文字資料中的詞頻以發現模式。

  5. 使用 Tiktoken 分析代幣計數來衡量複雜性。

這個 EDA 階段反映了六三八細緻的排序工作,他們必須先理清混亂,然後才能帶來秩序。透過詳細了解我們的資料集,我們為建立能夠精確分類和解釋文本的微調法學碩士奠定了基礎。

介紹

探索性資料分析 (EDA) 類似於處理令人畏懼的積壓資料-堆積如山、無組織且充滿未開發的潛力。就像二戰期間六三八單位處理大量積壓的未投遞郵件一樣,EDA 是我們在混亂中篩選以發現見解、識別趨勢並為下一階段的數據分析做好準備的方式。

在這次探索中,我們將深入研究 BBC 新聞文章的資料集,闡明其結構,解決不一致問題,並揭示隱藏在資料中的故事。 ”

評估待辦事項:資料集概述

首先,我們必須先了解資料集的規模和結構。 BBC 新聞文章資料集包含 2,234 個條目,分佈在五個類別:商業、體育、政治、科技和娛樂。每個條目都有兩個主要特點:

  • 類別:文章的主題或部分。
  • text:文章的完整內容。

為了更清楚地了解我們正在處理的內容,我們將資料載入到 Pandas DataFrame 中,進行快速檢查,並發現:

清理積壓訂單

隨著六三八處理未分類的郵件堆,我們也需要組織我們的資料集。清潔過程涉及幾個關鍵步驟:

  • 刪除重複項
    重複的文章使資料集變得混亂。識別並刪除這些冗餘後。

  • 處理缺失值
    儘管我們的資料集相對乾淨,但我們確保解決了任何潛在的空值,從而在最終資料中不留下任何空白條目。 ”

細分類別

積壓的訂單被清除後,我們分析了文章在類別之間的分佈,以確定主導主題。這是我們的發現:

  • 熱門類別:商業和運動並列佔比最大,每個類別包含 512 篇文章。

  • 較小的類別:娛樂、政治和科技,文章較少,但提供了獨特的見解。

分佈確認資料集是平衡的,使我們能夠專注於更深入的分析,而不必擔心嚴重的類別不平衡。 ”

放大:顯微鏡下的體育文章

就像按目的地對郵件進行分類一樣,我們選擇專注於體育類別以進行更深入的研究。目標是分析文字內容並提取有意義的模式。 ”

  • 標記化與停用詞刪除
    使用 NLTK 庫,我們將文字標記為單字並刪除了常見的停用詞(例如「and」、「the」、「is」)。這使我們能夠專注於對該類別更重要的單字。 ”

  • 詞頻分析
    創建頻率分佈是為了識別體育文章中最常見的術語。不出所料,「比賽」、「團隊」和「遊戲」等詞語佔據主導地位,反映了內容的競爭性質。 ”

視覺化結果:詞雲
為了捕捉體育文章的精髓,我們生成了詞雲。最常用的術語顯得更大,生動地描繪了該類別的核心主題。 ”

Exploratory Data Analysis: Digging Through the Backlog

重點

正如六三八精心分類和交付積壓的郵件一樣,我們的 EDA 流程揭示了 BBC 新聞資料集的結構化且富有洞察力的視圖。

代碼

!pip install tiktoken
!pip install matplotlib
!pip install wordcloud
!pip install nltk
!pip install pandas

import pandas as pd

df = pd.read_csv('/content/bbc.csv', on_bad_lines='skip')  


df.head()

df.info()

df.describe()

label_count = df['category'].value_counts()


len(df['text'])


df.drop_duplicates(inplace=True)

null_values = df.isnull().sum()

df.dropna(inplace=True)

import nltk
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from wordcloud import WordCloud
from collections import Counter
import matplotlib.pyplot as plt


nltk.download('punkt')
nltk.download('stopwords')
nltk.download('punkt_tab') 


target_label ="sport"
target_df = df[df['category'] == target_label]



target_word = [ word.lower()  for text in target_df['text']
                 for word in word_tokenize(text)
                 if word.isalnum() and word not in stopwords.words('english')
                   ]

target_word_count = Counter(target_word)


word_cloud = WordCloud().generate_from_frequencies(target_word_count)


plt.figure(figsize=(10, 5))
plt.imshow(word_cloud, interpolation='bilinear')
plt.axis('off')
plt.show()

登入後複製

以上是探索性資料分析:挖掘待辦事項的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

Python vs.C:申請和用例 Python vs.C:申請和用例 Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

您可以在2小時內學到多少python? 您可以在2小時內學到多少python? Apr 09, 2025 pm 04:33 PM

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

Python:遊戲,Guis等 Python:遊戲,Guis等 Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

2小時的Python計劃:一種現實的方法 2小時的Python計劃:一種現實的方法 Apr 11, 2025 am 12:04 AM

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python:探索其主要應用程序 Python:探索其主要應用程序 Apr 10, 2025 am 09:41 AM

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

Python與C:學習曲線和易用性 Python與C:學習曲線和易用性 Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python和時間:充分利用您的學習時間 Python和時間:充分利用您的學習時間 Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python:自動化,腳本和任務管理 Python:自動化,腳本和任務管理 Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

See all articles