全部在 PyTorch 中
請我喝杯咖啡☕
*我的貼文解釋了任何()。
all() 可以檢查 0D 或更多 D 張量的所有元素是否為 True,得到零個或更多元素的 0D 或更多 D 張量,如下所示:
*備忘錄:
- all() 可以與 torch 或張量一起使用。
- 第一個參數(輸入)使用 torch 或使用張量(必要類型:int、float、complex 或 bool 的張量)。
- 帶有 torch 的第二個參數或帶有張量的第一個參數是暗淡的(可選類型:int、int 元組或 int 列表)。
- 帶有 torch 的第三個參數或帶有張量的第二個參數是 keepdim(Optional-Default:False-Type:bool)。 *我的貼文解釋了 keepdim 的論點。
- torch 存在 out 參數(可選-預設:無-型別:張量):
*備註:
- 必須使用 out=。
- 我的貼文解釋了論點。
- 空張量回傳 1D 或更多 D 張量的 True 或空 1D 或更多 D 張量。
import torch my_tensor = torch.tensor(True) torch.all(input=my_tensor) my_tensor.all() torch.all(input=my_tensor, dim=0) torch.all(input=my_tensor, dim=-1) torch.all(input=my_tensor, dim=(0,)) torch.all(input=my_tensor, dim=(-1,)) # tensor(True) my_tensor = torch.tensor([True, False, True, False]) torch.all(input=my_tensor) torch.all(input=my_tensor, dim=0) torch.all(input=my_tensor, dim=-1) torch.all(input=my_tensor, dim=(0,)) torch.all(input=my_tensor, dim=(-1,)) # tensor(False) my_tensor = torch.tensor([[True, False, True, False], [True, False, True, False]]) torch.all(input=my_tensor) torch.all(input=my_tensor, dim=(0, 1)) torch.all(input=my_tensor, dim=(0, -1)) torch.all(input=my_tensor, dim=(1, 0)) torch.all(input=my_tensor, dim=(1, -2)) torch.all(input=my_tensor, dim=(-1, 0)) torch.all(input=my_tensor, dim=(-1, -2)) torch.all(input=my_tensor, dim=(-2, 1)) torch.all(input=my_tensor, dim=(-2, -1)) # tensor(False) torch.all(input=my_tensor, dim=0) torch.all(input=my_tensor, dim=(0,)) torch.all(input=my_tensor, dim=-2) # tensor([True, False, True, False]) torch.all(input=my_tensor, dim=1) torch.all(input=my_tensor, dim=-1) torch.all(input=my_tensor, dim=(-1,)) # tensor([False, False]) my_tensor = torch.tensor([[0, 1, 2, 3], [4, 5, 6, 7]]) torch.all(input=my_tensor) # tensor(False) my_tensor = torch.tensor([[0., 1., 2., 3.], [4., 5., 6., 7.]]) torch.all(input=my_tensor) # tensor(False) my_tensor = torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j, 3.+0.j], [4.+0.j, 5.+0.j, 6.+0.j, 7.+0.j]]) torch.all(input=my_tensor) # tensor(False) my_tensor = torch.tensor([[]]) torch.all(input=my_tensor) # tensor(True) torch.all(input=my_tensor, dim=0) torch.all(input=my_tensor, dim=-2) # tensor([], dtype=torch.bool) torch.all(input=my_tensor, dim=1) torch.all(input=my_tensor, dim=-1) # tensor([True])
以上是全部在 PyTorch 中的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。
