首頁 > 後端開發 > Python教學 > 擠入 PyTorch

擠入 PyTorch

Barbara Streisand
發布: 2025-01-01 05:02:09
原創
125 人瀏覽過

squeeze in PyTorch

請我喝杯咖啡☕

*我的貼文解釋了 unsqueeze()。

squeeze() 可以從零個或多個元素的0D 或多個D 張量中取得刪除零個或多個維度的零個或多個元素的0D 或多個D 張量,如果尺寸為1,如下圖所示:

*備忘錄:

  • 擠壓()可以與火炬或張量一起使用。
  • 第一個參數(輸入)使用 torch 或使用張量(必要類型:int、float、complex 或 bool 的張量)。
  • 帶有 torch 的第二個參數或帶有張量的第一個或多個參數是暗淡的(可選類型:int、int 元組或 int 列表): *備註:
    • 每個數字必須是唯一的。
    • 它可以刪除特定的零個或多個尺寸為1的維度。
    • 如果大小不是 1,即使設定零個或多個維度也不會被刪除。
import torch

my_tensor = torch.tensor([[[[0], [1]],
                           [[2], [3]],
                           [[4], [5]]]])
torch.squeeze(input=my_tensor)
my_tensor.squeeze()
torch.squeeze(input=my_tensor, dim=(0, 3))
my_tensor.squeeze(dim=(0, 3))
my_tensor.squeeze(0, 3)
torch.squeeze(input=my_tensor, dim=(0, 1, 3))
my_tensor.squeeze(dim=(0, 1, 3))
my_tensor.squeeze(0, 1, 3)
etc.
torch.squeeze(input=my_tensor, dim=(0, 1, 2, 3))
my_tensor.squeeze(dim=(0, 1, 2, 3))
my_tensor.squeeze(0, 1, 2, 3)
etc.
# tensor([[0, 1],
#         [2, 3],
#         [4, 5]])

torch.squeeze(input=my_tensor, dim=0)
torch.squeeze(input=my_tensor, dim=-4)
torch.squeeze(input=my_tensor, dim=(0,))
torch.squeeze(input=my_tensor, dim=(-4,))
torch.squeeze(input=my_tensor, dim=(0, 1))
torch.squeeze(input=my_tensor, dim=(0, 2))
torch.squeeze(input=my_tensor, dim=(0, -2))
torch.squeeze(input=my_tensor, dim=(0, -3))
torch.squeeze(input=my_tensor, dim=(1, 0))
etc.
torch.squeeze(input=my_tensor, dim=(0, 1, 2))
etc.
# tensor([[[0], [1]],
#         [[2], [3]],
#         [[4], [5]]])

torch.squeeze(input=my_tensor, dim=1)
torch.squeeze(input=my_tensor, dim=2)
torch.squeeze(input=my_tensor, dim=-2)
torch.squeeze(input=my_tensor, dim=-3)
torch.squeeze(input=my_tensor, dim=())
torch.squeeze(input=my_tensor, dim=(1,))
torch.squeeze(input=my_tensor, dim=(2,))
torch.squeeze(input=my_tensor, dim=(-2,))
torch.squeeze(input=my_tensor, dim=(-3,))
torch.squeeze(input=my_tensor, dim=(1, 2))
etc.
# tensor([[[[0], [1]],
#          [[2], [3]],
#          [[4], [5]]]])

torch.squeeze(input=my_tensor, dim=3)
torch.squeeze(input=my_tensor, dim=-1)
torch.squeeze(input=my_tensor, dim=(3,))
torch.squeeze(input=my_tensor, dim=(-1,))
torch.squeeze(input=my_tensor, dim=(1, 3))
torch.squeeze(input=my_tensor, dim=(1, -1))
torch.squeeze(input=my_tensor, dim=(2, 3))
torch.squeeze(input=my_tensor, dim=(2, -1))
torch.squeeze(input=my_tensor, dim=(3, 1))
etc.
torch.squeeze(input=my_tensor, dim=(1, 2, 3))
etc.
# tensor([[[0, 1],
#          [2, 3],
#          [4, 5]]])

my_tensor = torch.tensor([[[[0.], [1.]],
                           [[2.], [3.]],
                           [[4.], [5.]]]])
torch.squeeze(input=my_tensor)
# tensor([[0., 1.],
#         [2., 3.],
#         [4., 5.]])

my_tensor = torch.tensor([[[[0.+0.j], [1.+0.j]],
                           [[2.+0.j], [3.+0.j]],
                           [[4.+0.j], [5.+0.j]]]])
torch.squeeze(input=my_tensor)
# tensor([[0.+0.j, 1.+0.j],
#         [2.+0.j, 3.+0.j],
#         [4.+0.j, 5.+0.j]])

my_tensor = torch.tensor([[[[True], [False]],
                           [[False], [True]],
                           [[True], [False]]]])
torch.squeeze(input=my_tensor)
# tensor([[True, False],
#         [False, True],
#         [True, False]])
登入後複製

以上是擠入 PyTorch的詳細內容。更多資訊請關注PHP中文網其他相關文章!

來源:dev.to
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
作者最新文章
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板