在這個 Python 專案中,我們將建立一個簡單的 AR 繪圖應用程式。使用網路攝影機和手勢,您可以在螢幕上虛擬繪圖、自訂畫筆,甚至儲存您的創作!
首先,建立一個新資料夾並使用以下命令初始化新的虛擬環境:
python -m venv venv
./venv/Scripts/activate
接下來使用 pip 或您選擇的安裝程式安裝所需的庫:
pip install mediapipe
pip install opencv-python
您在 python 上安裝最新版本的 mediapipe 時可能會遇到問題。當我寫這篇部落格時,我使用的是 python 3.11.2。確保使用 python 上的相容版本。
第一步是設定網路攝影機並顯示視訊來源。我們將使用 OpenCV 的 VideoCapture 來存取相機並連續顯示影格。
import cv2 # The argument '0' specifies the default camera (usually the built-in webcam). cap = cv2.VideoCapture(0) # Start an infinite loop to continuously capture video frames from the webcam while True: # Read a single frame from the webcam # `ret` is a boolean indicating success; `frame` is the captured frame. ret, frame = cap.read() # Check if the frame was successfully captured # If not, break the loop and stop the video capture process. if not ret: break # Flip the frame horizontally (like a mirror image) frame = cv2.flip(frame, 1) # Display the current frame in a window named 'Webcam Feed' cv2.imshow('Webcam Feed', frame) # Wait for a key press for 1 millisecond # If the 'q' key is pressed, break the loop to stop the video feed. if cv2.waitKey(1) & 0xFF == ord('q'): break # Release the webcam resource to make it available for other programs cap.release() # Close all OpenCV-created windows cv2.destroyAllWindows()
你知道嗎?
在 OpenCV 中使用 cv2.waitKey() 時,傳回的金鑰程式碼可能包含額外的位,具體取決於平台。為了確保正確偵測按鍵,您可以使用 0xFF 屏蔽結果以隔離低 8 位元(實際 ASCII 值)。如果沒有這個,您的關鍵比較可能會在某些系統上失敗 - 因此請始終使用 & 0xFF 以獲得一致的行為!
使用 Mediapipe 的手解決方案,我們將偵測手並提取關鍵標誌的位置,例如食指和中指。
import cv2 import mediapipe as mp # Initialize the MediaPipe Hands module mp_hands = mp.solutions.hands # Load the hand-tracking solution from MediaPipe hands = mp_hands.Hands( min_detection_confidence=0.9, min_tracking_confidence=0.9 ) cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() if not ret: break # Flip the frame horizontally to create a mirror effect frame = cv2.flip(frame, 1) # Convert the frame from BGR (OpenCV default) to RGB (MediaPipe requirement) frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # Process the RGB frame to detect and track hands result = hands.process(frame_rgb) # If hands are detected in the frame if result.multi_hand_landmarks: # Iterate through all detected hands for hand_landmarks in result.multi_hand_landmarks: # Get the frame dimensions (height and width) h, w, _ = frame.shape # Calculate the pixel coordinates of the tip of the index finger cx, cy = int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].x * w), \ int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].y * h) # Calculate the pixel coordinates of the tip of the middle finger mx, my = int(hand_landmarks.landmark[mp_hands.HandLandmark.MIDDLE_FINGER_TIP].x * w), \ int(hand_landmarks.landmark[mp_hands.HandLandmark.MIDDLE_FINGER_TIP].y * h) # Draw a circle at the index finger tip on the original frame cv2.circle(frame, (cx, cy), 10, (0, 255, 0), -1) # Green circle with radius 10 # Display the processed frame in a window named 'Webcam Feed' cv2.imshow('Webcam Feed', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break # Exit the loop if 'q' is pressed # Release the webcam resources for other programs cap.release() cv2.destroyAllWindows()
我們將追蹤食指,並僅當食指和中指分開閾值距離時才允許繪圖。
我們將維護一個食指座標列表,以在原始幀上進行繪製,並且每次中指足夠靠近時,我們都會將 None 附加到該座標數組中,以指示損壞。
import cv2 import mediapipe as mp import math # Initialize the MediaPipe Hands module mp_hands = mp.solutions.hands hands = mp_hands.Hands( min_detection_confidence=0.9, min_tracking_confidence=0.9 ) # Variables to store drawing points and reset state draw_points = [] # A list to store points where lines should be drawn reset_drawing = False # Flag to indicate when the drawing should reset # Brush settings brush_color = (0, 0, 255) brush_size = 5 cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() if not ret: break frame = cv2.flip(frame, 1) frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) result = hands.process(frame_rgb) # If hands are detected if result.multi_hand_landmarks: for hand_landmarks in result.multi_hand_landmarks: h, w, _ = frame.shape # Get the frame dimensions (height and width) # Get the coordinates of the index finger tip cx, cy = int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].x * w), \ int(hand_landmarks.landmark[mp_hands.HandLandmark.INDEX_FINGER_TIP].y * h) # Get the coordinates of the middle finger tip mx, my = int(hand_landmarks.landmark[mp_hands.HandLandmark.MIDDLE_FINGER_TIP].x * w), \ int(hand_landmarks.landmark[mp_hands.HandLandmark.MIDDLE_FINGER_TIP].y * h) # Calculate the distance between the index and middle finger tips distance = math.sqrt((mx - cx) ** 2 + (my - cy) ** 2) # Threshold distance to determine if the fingers are close (used to reset drawing) threshold = 40 # If the fingers are far apart if distance > threshold: if reset_drawing: # Check if the drawing was previously reset draw_points.append(None) # None means no line reset_drawing = False draw_points.append((cx, cy)) # Add the current point to the list for drawing else: # If the fingers are close together set the flag to reset drawing reset_drawing = True # # Draw the lines between points in the `draw_points` list for i in range(1, len(draw_points)): if draw_points[i - 1] and draw_points[i]: # Only draw if both points are valid cv2.line(frame, draw_points[i - 1], draw_points[i], brush_color, brush_size) cv2.imshow('Webcam Feed', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break # Release the webcam and close all OpenCV windows cap.release() cv2.destroyAllWindows()
以上是初學者 Python 專案:使用 OpenCV 和 Mediapipe 建立擴增實境繪圖應用程式的詳細內容。更多資訊請關注PHP中文網其他相關文章!