首頁 後端開發 Golang 計算 Go 中發送給 LLM 的 Token 數量(第 2 部分)

計算 Go 中發送給 LLM 的 Token 數量(第 2 部分)

Jan 03, 2025 pm 10:03 PM

Counting the number of Tokens sent to a LLM in Go (part 2)

介紹

這是編寫 Go 應用程式的第二部分,該應用程式用於根據所選文字確定使用者發送給 LLM 的令牌數量。

在上一篇文章中,我提到我只想建立一些僅用 Golang 寫的東西,在我查看的 Github 儲存庫中,這個似乎非常好:go-hggingface。該代碼似乎很新,但它“有點”適合我。

執行

首先,程式碼存取 Hugginface 以取得所有與 LLM 相關的「標記器」列表,因此使用者應該擁有 HF 標記。因此,我將令牌放入 .env 檔案中,如圖所示。

HF_TOKEN="your-huggingface-token"
登入後複製

然後使用下頁中提供的範例 (https://github.com/gomlx/go-huggingface?tab=readme-ov-file),我圍繞它建立了自己的程式碼。

package main

import (
 "bytes"
 "fmt"
 "log"
 "os"
 "os/exec"
 "runtime"

 "github.com/gomlx/go-huggingface/hub"
 "github.com/gomlx/go-huggingface/tokenizers"

 "github.com/joho/godotenv"
 "github.com/sqweek/dialog"

 "fyne.io/fyne/v2"
 "fyne.io/fyne/v2/app"
 "fyne.io/fyne/v2/container"
 "fyne.io/fyne/v2/widget"
 //"github.com/inancgumus/scree"
)

var (
 // Model IDs we use for testing.
 hfModelIDs = []string{
  "ibm-granite/granite-3.1-8b-instruct",
  "meta-llama/Llama-3.3-70B-Instruct",
  "mistralai/Mistral-7B-Instruct-v0.3",
  "google/gemma-2-2b-it",
  "sentence-transformers/all-MiniLM-L6-v2",
  "protectai/deberta-v3-base-zeroshot-v1-onnx",
  "KnightsAnalytics/distilbert-base-uncased-finetuned-sst-2-english",
  "KnightsAnalytics/distilbert-NER",
  "SamLowe/roberta-base-go_emotions-onnx",
 }
)

func runCmd(name string, arg ...string) {
 cmd := exec.Command(name, arg...)
 cmd.Stdout = os.Stdout
 cmd.Run()
}

func ClearTerminal() {
 switch runtime.GOOS {
 case "darwin":
  runCmd("clear")
 case "linux":
  runCmd("clear")
 case "windows":
  runCmd("cmd", "/c", "cls")
 default:
  runCmd("clear")
 }
}

func FileSelectionDialog() string {
 // Open a file dialog box and let the user select a text file
 filePath, err := dialog.File().Filter("Text Files", "txt").Load()
 if err != nil {
  if err.Error() == "Cancelled" {
   fmt.Println("File selection was cancelled.")
  }
  log.Fatalf("Error selecting file: %v", err)
 }

 // Output the selected file name
 fmt.Printf("Selected file: %s\n", filePath)
 return filePath
}

func main() {

 var filePath string

 // read the '.env' file
 err := godotenv.Load()
 if err != nil {
  log.Fatal("Error loading .env file")
 }
 // get the value of the 'HF_TOKEN' environment variable
 hfAuthToken := os.Getenv("HF_TOKEN")
 if hfAuthToken == "" {
  log.Fatal("HF_TOKEN environment variable is not set")
 }

 // to display a list of LLMs to determine the # of tokens later on regarding the given text
 var llm string = ""
 var modelID string = ""
 myApp := app.New()
 myWindow := myApp.NewWindow("Select a LLM in the list")
 items := hfModelIDs
 // Label to display the selected item
 selectedItem := widget.NewLabel("Selected LLM: None")
 // Create a list widget
 list := widget.NewList(
  func() int {
   // Return the number of items in the list
   return len(items)
  },
  func() fyne.CanvasObject {
   // Template for each list item
   return widget.NewLabel("Template")
  },
  func(id widget.ListItemID, obj fyne.CanvasObject) {
   // Update the template with the actual data
   obj.(*widget.Label).SetText(items[id])
  },
 )
 // Handle list item selection
 list.OnSelected = func(id widget.ListItemID) {
  selectedItem.SetText("Selected LLM:" + items[id])
  llm = items[id]
 }

 // Layout with the list and selected item label
 content := container.NewVBox(
  list,
  selectedItem,
 )

 // Set the content of the window
 myWindow.SetContent(content)
 myWindow.Resize(fyne.NewSize(300, 400))
 myWindow.ShowAndRun()
 ClearTerminal()
 fmt.Printf("Selected LLM: %s\n", llm)
 //////

 //List files for the selected model
 for _, modelID := range hfModelIDs {
  if modelID == llm {
   fmt.Printf("\n%s:\n", modelID)
   repo := hub.New(modelID).WithAuth(hfAuthToken)
   for fileName, err := range repo.IterFileNames() {
    if err != nil {
     panic(err)
    }
    fmt.Printf("fileName\t%s\n", fileName)
    fmt.Printf("repo\t%s\n", repo)
    fmt.Printf("modelID\t%s\n", modelID)
   }
  }
 }

 //List tokenizer classes for the selected model
 for _, modelID := range hfModelIDs {
  if modelID == llm {
   fmt.Printf("\n%s:\n", modelID)
   repo := hub.New(modelID).WithAuth(hfAuthToken)
   fmt.Printf("\trepo=%s\n", repo)
   config, err := tokenizers.GetConfig(repo)
   if err != nil {
    panic(err)
   }
   fmt.Printf("\ttokenizer_class=%s\n", config.TokenizerClass)
  }
 }

 // Models URL -> "https://huggingface.co/api/models"
 repo := hub.New(modelID).WithAuth(hfAuthToken)
 tokenizer, err := tokenizers.New(repo)
 if err != nil {
  panic(err)
 }

 // call file selection dialogbox
 filePath = FileSelectionDialog()

 // Open the file
 filerc, err := os.Open(filePath)
 if err != nil {
  fmt.Printf("Error opening file: %v\n", err)
  return
 }
 defer filerc.Close()

 // Put the text file content into a buffer and convert it to a string.
 buf := new(bytes.Buffer)
 buf.ReadFrom(filerc)
 sentence := buf.String()

 tokens := tokenizer.Encode(sentence)
 fmt.Println("Sentence:\n", sentence)

 fmt.Printf("Tokens:  \t%v\n", tokens)
}
登入後複製

在「hfModelIDs」的「var」部分中,我加入了一些新的引用,例如IBM 的Granite、Meta 的LLama 以及Mistral模型。

Huggingface 令牌也直接在 Go 程式碼中取得和讀取。

我添加了一個對話框來顯示法學碩士列表(我最終會更改),一個對話框來添加文件中的文本(我喜歡這種東西?)以及一些要清除和刪除的代碼行清潔屏幕? !

輸入文字如下;

The popularity of the Rust language continues to explode; yet, many critical codebases remain authored in C, and cannot be realistically rewritten by hand. Automatically translating C to Rust is thus an appealing course of action. Several works have gone down this path, handling an ever-increasing subset of C through a variety of Rust features, such as unsafe. While the prospect of automation is appealing, producing code that relies on unsafe negates the memory safety guarantees offered by Rust, and therefore the main advantages of porting existing codebases to memory-safe languages.
We instead explore a different path, and explore what it would take to translate C to safe Rust; that is, to produce code that is trivially memory safe, because it abides by Rust's type system without caveats. Our work sports several original contributions: a type-directed translation from (a subset of) C to safe Rust; a novel static analysis based on "split trees" that allows expressing C's pointer arithmetic using Rust's slices and splitting operations; an analysis that infers exactly which borrows need to be mutable; and a compilation strategy for C's struct types that is compatible with Rust's distinction between non-owned and owned allocations.
We apply our methodology to existing formally verified C codebases: the HACL* cryptographic library, and binary parsers and serializers from EverParse, and show that the subset of C we support is sufficient to translate both applications to safe Rust. Our evaluation shows that for the few places that do violate Rust's aliasing discipline, automated, surgical rewrites suffice; and that the few strategic copies we insert have a negligible performance impact. Of particular note, the application of our approach to HACL* results in a 80,000 line verified cryptographic library, written in pure Rust, that implements all modern algorithms - the first of its kind.
登入後複製

檢定
執行後的程式碼會顯示對話方塊 bx,您可以在其中選擇所需的 LLM。

Counting the number of Tokens sent to a LLM in Go (part 2)

如果一切順利,下一步是在本機下載「tokenizer」檔案(請參閱 Github 儲存庫的說明),然後會顯示一個對話框,選擇包含要評估的內容的文字檔案令牌數量。

到目前為止,我已要求訪問 Meta LLama 和 Google“google/gemma-2–2b-it”模型,並正在等待訪問權限被授予。

google/gemma-2-2b-it:
        repo=google/gemma-2-2b-it
panic: request for metadata from "https://huggingface.co/google/gemma-2-2b-it/resolve/299a8560bedf22ed1c72a8a11e7dce4a7f9f51f8/tokenizer_config.json" failed with the following message: "403 Forbidden"
登入後複製

Counting the number of Tokens sent to a LLM in Go (part 2)

結論

我認為實現我想要的目標的正確途徑是,一個能夠確定代幣數量的 Golang 程式是用戶發送到 LLM 的查詢。

這個專案的唯一目的是了解針對各種 LLM 的查詢中確定令牌數量背後的內部系統,並發現它們是如何計算的。

感謝您的閱讀並歡迎評論。

最終結論之前,敬請期待…?

以上是計算 Go 中發送給 LLM 的 Token 數量(第 2 部分)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1657
14
CakePHP 教程
1415
52
Laravel 教程
1309
25
PHP教程
1257
29
C# 教程
1230
24
Golang的目的:建立高效且可擴展的系統 Golang的目的:建立高效且可擴展的系統 Apr 09, 2025 pm 05:17 PM

Go語言在構建高效且可擴展的系統中表現出色,其優勢包括:1.高性能:編譯成機器碼,運行速度快;2.並發編程:通過goroutines和channels簡化多任務處理;3.簡潔性:語法簡潔,降低學習和維護成本;4.跨平台:支持跨平台編譯,方便部署。

Golang和C:並發與原始速度 Golang和C:並發與原始速度 Apr 21, 2025 am 12:16 AM

Golang在並發性上優於C ,而C 在原始速度上優於Golang。 1)Golang通過goroutine和channel實現高效並發,適合處理大量並發任務。 2)C 通過編譯器優化和標準庫,提供接近硬件的高性能,適合需要極致優化的應用。

Golang vs. Python:主要差異和相似之處 Golang vs. Python:主要差異和相似之處 Apr 17, 2025 am 12:15 AM

Golang和Python各有优势:Golang适合高性能和并发编程,Python适用于数据科学和Web开发。Golang以其并发模型和高效性能著称,Python则以简洁语法和丰富库生态系统著称。

Golang vs. Python:性能和可伸縮性 Golang vs. Python:性能和可伸縮性 Apr 19, 2025 am 12:18 AM

Golang在性能和可擴展性方面優於Python。 1)Golang的編譯型特性和高效並發模型使其在高並發場景下表現出色。 2)Python作為解釋型語言,執行速度較慢,但通過工具如Cython可優化性能。

C和Golang:表演至關重要時 C和Golang:表演至關重要時 Apr 13, 2025 am 12:11 AM

C 更適合需要直接控制硬件資源和高性能優化的場景,而Golang更適合需要快速開發和高並發處理的場景。 1.C 的優勢在於其接近硬件的特性和高度的優化能力,適合遊戲開發等高性能需求。 2.Golang的優勢在於其簡潔的語法和天然的並發支持,適合高並發服務開發。

表演競賽:Golang vs.C 表演競賽:Golang vs.C Apr 16, 2025 am 12:07 AM

Golang和C 在性能競賽中的表現各有優勢:1)Golang適合高並發和快速開發,2)C 提供更高性能和細粒度控制。選擇應基於項目需求和團隊技術棧。

Golang的影響:速度,效率和簡單性 Golang的影響:速度,效率和簡單性 Apr 14, 2025 am 12:11 AM

goimpactsdevelopmentpositationality throughspeed,效率和模擬性。 1)速度:gocompilesquicklyandrunseff,IdealforlargeProjects.2)效率:效率:ITScomprehenSevestAndardArdardArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdArdEcceSteral Depentencies,增強的Depleflovelmentimency.3)簡單性。

Golang和C:性能的權衡 Golang和C:性能的權衡 Apr 17, 2025 am 12:18 AM

Golang和C 在性能上的差異主要體現在內存管理、編譯優化和運行時效率等方面。 1)Golang的垃圾回收機制方便但可能影響性能,2)C 的手動內存管理和編譯器優化在遞歸計算中表現更為高效。

See all articles