在 2D 點集中查找孔
任務是在笛卡爾網格系統內的一組 2D 點中查找孔。這些點代表土壤樣本位置,洞穴可能包括巨大的岩石、沼澤或湖泊/池塘。目標是找到大致定義這些區域的凹多邊形,調整演算法的靈敏度來控制多邊形的粗糙度或平滑度。
解
步驟:
將孔段多邊形化:將線段轉換為凹多邊形。對點進行排序以確保正確的連接並刪除重複項。
using System; using System.Collections.Generic; public class Holes { // Density map (2D array) private int[][] map; // List of hole segments (lines) private List<Line> segments; // Polygonized holes (concave polygons) private List<Polygon> holes; // Polygonization tolerance (higher value = smoother polygons) private double tolerance; // Initializes the hole detection algorithm. public Holes(int[][] points, int mapSize, double tolerance) { if (points == null || mapSize <= 0 || tolerance <= 0) { throw new ArgumentException("Invalid arguments"); } // Initialize the variables this.map = new int[mapSize][mapSize]; this.tolerance = tolerance; this.segments = new List<Line>(); this.holes = new List<Polygon>(); // Create density map CreateDensityMap(points, mapSize); } // Identifies holes in the density map. public void FindHoles() { if (map == null || map.Length == 0) { throw new InvalidOperationException("Density map not initialized."); } // Find hole cells List<Cell> holeCells = FindCells(0); // Group hole cells into segments List<List<Line>> lineGroups = GroupLines(holeCells); // Polygonize segments PolygonizeSegments(lineGroups); } // Helper functions for hole detection. private void CreateDensityMap(int[][] points, int mapSize) { // Scale and project points onto a grid for (int i = 0; i < points.Length; i++) { double scaledX = points[i][0] / points[0][0] * mapSize; double scaledY = points[i][1] / points[0][1] * mapSize; int x = (int)scaledX; int y = (int)scaledY; // Increment count in density map map[x][y]++; } } private List<Cell> FindCells(int threshold) { List<Cell> holeCells = new List<Cell>(); for (int i = 0; i < map.Length; i++) { for (int j = 0; j < map[i].Length; j++) { if (map[i][j] == 0 || map[i][j] <= threshold) { holeCells.Add(new Cell(i, j)); } } } return holeCells; } private List<List<Line>> GroupLines(List<Cell> holeCells) { // Group lines by proximity List<List<Line>> lineGroups = new List<List<Line>>(); foreach (Cell holeCell in holeCells) { List<Line> group = null; // Find existing group or create a new one for (int i = 0; i < lineGroups.Count; i++) { if (lineGroups[i].Find(line => line.Proximity(holeCell) <= tolerance) != null) { group = lineGroups[i]; break; } } if (group == null) { group = new List<Line>(); lineGroups.Add(group); } // Add horizontal/vertical lines group.Add(new Line(holeCell.x, holeCell.y, true)); group.Add(new Line(holeCell.x, holeCell.y, false)); } return lineGroups; } private void PolygonizeSegments(List<List<Line>> lineGroups) { foreach (List<Line> lineGroup in lineGroups) { Polygon polygon = PolygonizeSegment(lineGroup); if (polygon != null) { holes.Add(polygon); } } } private Polygon PolygonizeSegment(List<Line> lineSegment) { // Sort lines by angle (convex hull algorithm) lineSegment.Sort((a, b) => a.Angle.CompareTo(b.Angle)); // Remove duplicate lines List<Line> uniqueLines = new List<Line>(); foreach (Line line in lineSegment) { if (uniqueLines.Count == 0 || uniqueLines[uniqueLines.Count - 1].Angle != line.Angle) { uniqueLines.Add(line); } } // Polygonize lines List<Point> points = new List<Point>(); for (int i = 0; i < uniqueLines.Count; i++) { Point point = null; Line currentLine = uniqueLines[i]; if (uniqueLines[(i + 1) % uniqueLines.Count].Angle - currentLine.Angle > Math.PI) { point = currentLine.GetIntersection(uniqueLines[(i + 1) % uniqueLines.Count], true); } else { point = currentLine.GetIntersection(uniqueLines[(i + 1) % uniqueLines.Count], false); } if (point != null) { points.Add(point); } } return new Polygon(points); } // Helper classes for line/polygon representation. private class Line { public int x1, y1, x2, y2; public double angle; public bool isHorizontal; public Line(int x, int y, bool isHorizontal) { if (isHorizontal) { x1 = 0; y1 = y; x2 = map.GetLength(0) - 1; y2 = y; } else { x1 = x; y1 = 0; x2 = x; y2 = map[0].GetLength(0) - 1; } this.angle = Math.Atan2(y2 - y1, x2 - x1); this.isHorizontal = isHorizontal; } public double Angle { get { return angle; } } public double Proximity(Cell cell) { double distX, distY; if (isHorizontal) { distX = cell.x - x1; distY = cell.y - y1; } else { distX = cell.x - x2; distY = cell.y - y2; } return Math.Sqrt(distX * distX + distY * distY); } public Point GetIntersection(Line other, bool isConvex) { double denominator, numerator, tx, ty; if (isHorizontal) { denominator = (other.y2 - other.y1) - (y2 - y1); numerator = ((other.x2 - other.x1) * (y1 - other.y1)) - ((x2 - x1) * (other.y2 - other.y1)); tx = numerator / denominator; ty = other.y1 + ((tx - other.x1) * (other.y2 - other.y1)) / (other.x2 - other.x1); } else { denominator = (other.x2 - other.x1) - (x2 - x1);
以上是我們如何辨識和描繪代表土壤樣本位置的二維點集中的孔?的詳細內容。更多資訊請關注PHP中文網其他相關文章!