PyTorch 中的 FiveCrop
請我喝杯咖啡☕
*備忘錄:
- 我的帖子解釋了 OxfordIIITPet()。
FiveCrop() 可以將影像裁切為 5 個部分(左上、右上、左下、右下和中心),如下所示:
*備忘錄:
- 初始化的第一個參數是 size(Required-Type:int or tuple/list(int) or size()):
*備註:
- 它是[高度,寬度]。
- 必須是 1
- 元組/列表必須是具有 1 或 2 個元素的一維。
- 單一值(int 或 tuple/list(int) 表示 [size, size]。
- 第一個參數是img(必要型別:PIL影像或張量(int)):
*備註:
- 張量必須是一個或多個元素的 2D 或 3D。
- 不要使用img=。
- v2建議依照V1還是V2使用?我應該使用哪一個?
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import FiveCrop fivecrop = FiveCrop(size=100) fivecrop # FiveCrop(size=(100, 100)) fivecrop.size # (100, 100) origin_data = OxfordIIITPet( root="data", transform=None ) p500p394origin_data = OxfordIIITPet( root="data", transform=FiveCrop(size=[500, 394]) # transform=FiveCrop(size=[600]) # transform=FiveCrop(size=[600, 600]) ) p300_data = OxfordIIITPet( root="data", transform=FiveCrop(size=300) ) p200_data = OxfordIIITPet( root="data", transform=FiveCrop(size=200) ) p100_data = OxfordIIITPet( root="data", transform=FiveCrop(size=100) ) p50_data = OxfordIIITPet( root="data", transform=FiveCrop(size=50) ) p10_data = OxfordIIITPet( root="data", transform=FiveCrop(size=10) ) p200p300_data = OxfordIIITPet( root="data", transform=FiveCrop(size=[200, 300]) ) p300p200_data = OxfordIIITPet( root="data", transform=FiveCrop(size=[300, 200]) ) import matplotlib.pyplot as plt def show_images1(fcims, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) titles = ['Top-left', 'Top-right', 'bottom-left', 'bottom-right', 'center'] for i, fcim in zip(range(1, 6), fcims): plt.subplot(1, 5, i) plt.title(label=titles[i-1], fontsize=14) plt.imshow(X=fcim) plt.tight_layout() plt.show() plt.figure(figsize=(7, 9)) plt.title(label="Origin_data", fontsize=14) plt.imshow(X=origin_data[0][0]) show_images1(fcims=p500p394origin_data[0][0], main_title="p500p394origin_data") show_images1(fcims=p300_data[0][0], main_title="p300_data") show_images1(fcims=p200_data[0][0], main_title="p200_data") show_images1(fcims=p100_data[0][0], main_title="p100_data") show_images1(fcims=p50_data[0][0], main_title="p50_data") show_images1(fcims=p10_data[0][0], main_title="p10_data") show_images1(fcims=p200p300_data[0][0], main_title="p200p300_data") show_images1(fcims=p300p200_data[0][0], main_title="p300p200_data") # ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓ def show_images2(im, main_title=None, s=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) titles = ['Top-left', 'Top-right', 'bottom-left', 'bottom-right', 'center'] if not s: s = [im.size[1], im.size[0]] fc = FiveCrop(size=s) # Here for i, fcim in zip(range(1, 6), fc(im)): plt.subplot(1, 5, i) plt.title(label=titles[i-1], fontsize=14) plt.imshow(X=fcim) # Here plt.tight_layout() plt.show() plt.figure(figsize=(7, 9)) plt.title(label="Origin_data", fontsize=14) plt.imshow(X=origin_data[0][0]) show_images2(im=origin_data[0][0], main_title="p500p394origin_data") # show_images2(im=origin_data[0][0], main_title="p500p394origin_data", # s=[500, 394]) show_images2(im=origin_data[0][0], main_title="p300_data", s=300) show_images2(im=origin_data[0][0], main_title="p200_data", s=200) show_images2(im=origin_data[0][0], main_title="p100_data", s=100) show_images2(im=origin_data[0][0], main_title="p50_data", s=50) show_images2(im=origin_data[0][0], main_title="p10_data", s=10) show_images2(im=origin_data[0][0], main_title="p200p300_data", s=[200, 300]) show_images2(im=origin_data[0][0], main_title="p300p200_data", s=[300, 200])
以上是PyTorch 中的 FiveCrop的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。
