如何從 Spark DataFrame 中的每個群組中選擇第一行?
分組 DataFrame 中的首行選擇
在處理 Spark 中的複雜資料集時,通常需要根據特定條件從每個群組中選擇特定行。常見的情況是從每個群組中選擇第一行,並按特定列排序。
為了從 DataFrame 的每個群組中選擇第一行,可以使用幾種方法:
視窗函數:
<code>import org.apache.spark.sql.functions._ import org.apache.spark.sql.expressions.Window // 创建一个带有分组数据的 DataFrame val df = sc.parallelize(Seq((0, "cat26", 30.9), (0, "cat13", 22.1), (0, "cat95", 19.6), (0, "cat105", 1.3), (1, "cat67", 28.5), (1, "cat4", 26.8), (1, "cat13", 12.6), (1, "cat23", 5.3), (2, "cat56", 39.6), (2, "cat40", 29.7), (2, "cat187", 27.9), (2, "cat68", 9.8), (3, "cat8", 35.6))).toDF("Hour", "Category", "TotalValue") // 创建窗口规范 val w = Window.partitionBy($"Hour").orderBy($"TotalValue".desc) // 计算每个组的行号 val dfTop = df.withColumn("rn", row_number.over(w)).where($"rn" === 1).drop("rn") // 显示每个组的第一行 dfTop.show</code>
簡單的 SQL 聚合與連接:
<code>val dfMax = df.groupBy($"Hour".as("max_hour")).agg(max($"TotalValue").as("max_value")) val dfTopByJoin = df.join(broadcast(dfMax), ($"Hour" === $"max_hour") && ($"TotalValue" === $"max_value")) .drop("max_hour") .drop("max_value") dfTopByJoin.show</code>
結構體排序:
<code>val dfTop = df.select($"Hour", struct($"TotalValue", $"Category").alias("vs")) .groupBy($"Hour") .agg(max("vs").alias("vs")) .select($"Hour", $"vs.Category", $"vs.TotalValue") dfTop.show</code>
DataSet API:
Spark 1.6:
<code>case class Record(Hour: Integer, Category: String, TotalValue: Double) df.as[Record] .groupBy($"Hour") .reduce((x, y) => if (x.TotalValue > y.TotalValue) x else y) .show</code>
Spark 2.0 或更高版本:
<code>df.as[Record] .groupByKey(_.Hour) .reduceGroups((x, y) => if (x.TotalValue > y.TotalValue) x else y)</code>
這些方法提供了多種根據指定的排序條件從每個群組中選擇第一行的方法。方法的選擇取決於具體的需要和性能考慮。
以上是如何從 Spark DataFrame 中的每個群組中選擇第一行?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

全表掃描在MySQL中可能比使用索引更快,具體情況包括:1)數據量較小時;2)查詢返回大量數據時;3)索引列不具備高選擇性時;4)複雜查詢時。通過分析查詢計劃、優化索引、避免過度索引和定期維護表,可以在實際應用中做出最優選擇。

是的,可以在 Windows 7 上安裝 MySQL,雖然微軟已停止支持 Windows 7,但 MySQL 仍兼容它。不過,安裝過程中需要注意以下幾點:下載適用於 Windows 的 MySQL 安裝程序。選擇合適的 MySQL 版本(社區版或企業版)。安裝過程中選擇適當的安裝目錄和字符集。設置 root 用戶密碼,並妥善保管。連接數據庫進行測試。注意 Windows 7 上的兼容性問題和安全性問題,建議升級到受支持的操作系統。

MySQL是一個開源的關係型數據庫管理系統。 1)創建數據庫和表:使用CREATEDATABASE和CREATETABLE命令。 2)基本操作:INSERT、UPDATE、DELETE和SELECT。 3)高級操作:JOIN、子查詢和事務處理。 4)調試技巧:檢查語法、數據類型和權限。 5)優化建議:使用索引、避免SELECT*和使用事務。

MySQL 和 MariaDB 可以共存,但需要謹慎配置。關鍵在於為每個數據庫分配不同的端口號和數據目錄,並調整內存分配和緩存大小等參數。連接池、應用程序配置和版本差異也需要考慮,需要仔細測試和規劃以避免陷阱。在資源有限的情況下,同時運行兩個數據庫可能會導致性能問題。

數據集成簡化:AmazonRDSMySQL與Redshift的零ETL集成高效的數據集成是數據驅動型組織的核心。傳統的ETL(提取、轉換、加載)流程複雜且耗時,尤其是在將數據庫(例如AmazonRDSMySQL)與數據倉庫(例如Redshift)集成時。然而,AWS提供的零ETL集成方案徹底改變了這一現狀,為從RDSMySQL到Redshift的數據遷移提供了簡化、近乎實時的解決方案。本文將深入探討RDSMySQL零ETL與Redshift集成,闡述其工作原理以及為數據工程師和開發者帶來的優勢。

MySQL 數據庫中,用戶和數據庫的關係通過權限和表定義。用戶擁有用戶名和密碼,用於訪問數據庫。權限通過 GRANT 命令授予,而表由 CREATE TABLE 命令創建。要建立用戶和數據庫之間的關係,需創建數據庫、創建用戶,然後授予權限。

LaravelEloquent模型檢索:輕鬆獲取數據庫數據EloquentORM提供了簡潔易懂的方式來操作數據庫。本文將詳細介紹各種Eloquent模型檢索技巧,助您高效地從數據庫中獲取數據。 1.獲取所有記錄使用all()方法可以獲取數據庫表中的所有記錄:useApp\Models\Post;$posts=Post::all();這將返回一個集合(Collection)。您可以使用foreach循環或其他集合方法訪問數據:foreach($postsas$post){echo$post->

MySQL適合初學者使用,因為它安裝簡單、功能強大且易於管理數據。 1.安裝和配置簡單,適用於多種操作系統。 2.支持基本操作如創建數據庫和表、插入、查詢、更新和刪除數據。 3.提供高級功能如JOIN操作和子查詢。 4.可以通過索引、查詢優化和分錶分區來提升性能。 5.支持備份、恢復和安全措施,確保數據的安全和一致性。
