使用Python計數文件中的單詞頻率
本教程向您展示瞭如何通過使用Python分析單詞頻率快速確定文檔的主要主題。 手動計數單詞的發生是乏味的。這種自動化方法簡化了過程。
>>我們將使用一個示例文本文件test.txt
(下載它,但不要窺視!)來說明。 目的是根據單詞頻率猜測教程的主題。
了解正則表達式
這個過程使用正則表達式(REGEX)。 如果不熟悉,則正則是一個字符序列,定義搜索模式的字符串匹配模式(例如“查找和替換”)。 要深入研究,請參閱專用的正則教程。
>構建程序
-
>讀取文件:該程序首先將文本文件讀取到字符串:
開始document_text = open('test.txt', 'r') text_string = document_text.read().lower()
登入後複製 -
正則表達式:一個正則表達式過濾單詞3至15個字符:
match_pattern = re.findall(r'\b[a-z]{3,15}\b', text_string)
登入後複製 -
單詞頻率:詞典跟踪單詞頻率:
frequency = {} for word in match_pattern: count = frequency.get(word, 0) frequency[word] = count + 1
登入後複製 -
然後
完成程序
frequency_list = frequency.keys() for word in frequency_list: print(word, frequency[word])
登入後複製
這是合併的python代碼:
>運行此功能將輸出一個單詞頻率列表。 最常見的單詞暗示了原始教程的主題。
import re frequency = {} document_text = open('test.txt', 'r') text_string = document_text.read().lower() match_pattern = re.findall(r'\b[a-z]{3,15}\b', text_string) for word in match_pattern: count = frequency.get(word, 0) frequency[word] = count + 1 frequency_list = frequency.keys() for word in frequency_list: print(word, frequency[word])
>處理較大的文本文件
對於較大的文件,對頻率字典進行排序簡化了查找最常見的單詞:
這將輸出一個排序的列表,最常見的單詞首先出現。>
import re frequency = {} document_text = open('dracula.txt', 'r') # Example: dracula.txt text_string = document_text.read().lower() match_pattern = re.findall(r'\b[a-z]{3,15}\b', text_string) for word in match_pattern: count = frequency.get(word, 0) frequency[word] = count + 1 most_frequent = dict(sorted(frequency.items(), key=lambda elem: elem[1], reverse=True)) most_frequent_count = most_frequent.keys() for word in most_frequent_count: print(word, most_frequent[word])
不包括常用詞
使用黑名單:
import re frequency = {} document_text = open('dracula.txt', 'r') text_string = document_text.read().lower() match_pattern = re.findall(r'\b[a-z]{3,15}\b', text_string) blacklisted = ['the', 'and', 'for', 'that', 'which'] for word in match_pattern: if word not in blacklisted: count = frequency.get(word, 0) frequency[word] = count + 1 most_frequent = dict(sorted(frequency.items(), key=lambda elem: elem[1], reverse=True)) most_frequent_count = most_frequent.keys() for word in most_frequent_count: print(word, most_frequent[word])
以上是使用Python計數文件中的單詞頻率的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。
