AI語言模型的演變
已設定了新的標準,尤其是在編碼和編程環境中。領導電荷為> deepSeek-v3,gpt-4o 和
結論>
>
模型體系結構和設計> deepSeek-v3
deepSeek -v3是具有6710億參數的外源外源混合物(MOE)模型,每個令牌激活了370億個參數。它利用了14.8萬億代幣訓練的最先進的負載平衡和多token預測方法。該模型在多個基準測試中實現頂級性能,維持培訓效率,成本僅為278.8萬h800 gpu小時。 DeepSeek-v3 deepseek-r1 lite中的推理能力,並提供了128K上下文窗口。此外,它可以處理多種輸入類型,包括文本,結構化數據和復雜的多模式輸入,使其用於多種用例。 也請閱讀:使用DeepSeek-V3 構建AI應用程序 > gpt-4o綠色3.3 70B
METAllama3.3 70 B多語言大語言模型(LLM)是一種開源,預先培訓的,指令調節的生成模型,具有700億個參數。它旨在優化效率和可擴展性。它採用尖端技術來處理各種各樣的任務,對超過15萬億代幣進行了培訓。 Llama 3.3 70B是一種使用優化的變壓器體系結構的自動回歸語言模型。該模型在幾個基准上實現了出色的性能,並通過優化的資源分配保持培訓成本最低。
llama 3.3 70b支持寬闊的上下文窗口,並包含了高級推理功能,以實現細微和精確的任務處理。它旨在處理基於文本的輸入,但也可以處理結構化數據,在各種應用程序中提供靈活性。> DeepSeek-V3 vs GPT-4O vs Llama 3.3 70b:模型評估
1。模型概述
Benchmark | Description | DeepSeek-V3 | GPT-4o | Llama 3.3 70B |
MMLU | Massive Multitask Language Understanding- Test knowledge across 57 subjects including maths, history, law and more | 88.5% | 88.7% | 88.5% |
MMLU-Pro | A more robust MMLU benchmark with more complex reasoning focused questions and reduced prompt sensitivity | 75.9% | 74.68% | 75.9% |
MMMU | Massive Multitask Multimodal Understanding: Text understanding across text, audio,images and videos | Not available | 69.1% | Not available |
HellaSwag | A challenging sentence completion benchmark | 88.9% | Not available | Not available |
HumanEval | Evaluates code generation and problem solving capabilities | 82.6% | 90.2% | 88.4% |
MATH | Tests Mathematical problem solving abilities across various difficulty levels | 61.6% | 75.9% | 77% |
GPQA | Test PhD-level knowledge in physics, chemistry and biology that require domain expertise | 59.1% | 53.6% | 50.5% |
IFEval | Test model’s ability to accurately follow explicit formatting instructions, generate appropriate outputs and maintain consistent instructions | 86.1% | Not available | 92.1% |
>您可以在此處找到其單獨的基準測試的結果:
談到定價,與DeepSeek-v3相比,GPT-4O的輸入和輸出令牌貴大約30倍。同時,與DeepSeek-V3有關輸入和輸出令牌的Llama 3.3 70B指令大約貴1.5倍。 在需要結構化任務完成的基準中,
DeepSeek-V3在基準中擅長,例如MMLU(大量的多任務語言理解)和HumaneVal(代碼生成)。但是,它在數學(數學解決問題)等基準中面臨挑戰,在數學(數學解決問題)中,其表現不那麼競爭。它也導致GPQA(廣義段落問題回答),表現優於該域中的其他模型。> 在HumaneVal和MMLU中,
gpt-4O表現特別出色,在那裡它以其在各種主題上產生高質量響應的能力而脫穎而出。儘管它在基於推理的任務中閃耀,但它在其他模型等專業領域(例如Math和GPQA)中掙扎。 Llama 3.3 70b在數學和IFEVAL等基準(評估後的指令)等基準中顯示出其優勢。它比其他模型更有效地展示了出色的問題解決能力,並更有效地遵循複雜的指示。它在HumaneVal和GPQA等其他基準測試中的性能不如DeepSeek-V3和GPT-4O。 > deepSeek-v3 vs gpt-4o vs llama 3.3 70b:編碼功能
現在,我們將比較DeepSeek-V3,GPT-4O和Llama 3.3 70B的代碼編寫功能。為此,我們將在所有三種模型上給出相同的提示,並在以下指標上評估他們的回答:
可讀性
q。寫python代碼以查找大量的階乘。
GPT-4O響應
使用數組(手動處理乘法和攜帶操作)來計算大數的階乘,這是一個python實現:
生成代碼的輸出
的響應駱駝3.3 70B
>def multiply(arr, x): """ Multiplies an array representation of a number with an integer x. : param arr: List of integers representing the digits of the number. : param x: Integer to multiply with. :return: Updated array with the result. """ carry = 0 # Initialize carry for i in range(len(arr)): prod = arr[i] * x + carry arr[i] = prod % 10 # Store last digit of the product in the array carry = prod // 10 # Update the carry # Process carry, add digits to the array while carry > 0: arr.append(carry % 10) carry //= 10 return arr def factorial_large_number_array(n): """ Calculate the factorial of a large number using array representation. : param n: Integer for which the factorial is to be computed. :return: Factorial of n as a string. """ if n < 0: return "Factorial is not defined for negative numbers." if n == 0 or n == 1: return "1" arr = [1] # Initialize the array with the first factorial value (1) for x in range(2, n + 1): arr = multiply(arr, x) # The result is stored in reverse order in the array return ''.join(map(str, reversed(arr))) # Input a large number try: number = int(input("Enter a large number to calculate its factorial: ")) result = factorial_large_number_array(number) print(f"The factorial of {number} is:\n{result}") except ValueError: print("Invalid input! Please enter a valid integer.")
def multiply(arr, x): """ Multiplies an array representation of a number with an integer x. : param arr: List of integers representing the digits of the number. : param x: Integer to multiply with. :return: Updated array with the result. """ carry = 0 # Initialize carry for i in range(len(arr)): prod = arr[i] * x + carry arr[i] = prod % 10 # Store last digit of the product in the array carry = prod // 10 # Update the carry # Process carry, add digits to the array while carry > 0: arr.append(carry % 10) carry //= 10 return arr def factorial_large_number_array(n): """ Calculate the factorial of a large number using array representation. : param n: Integer for which the factorial is to be computed. :return: Factorial of n as a string. """ if n < 0: return "Factorial is not defined for negative numbers." if n == 0 or n == 1: return "1" arr = [1] # Initialize the array with the first factorial value (1) for x in range(2, n + 1): arr = multiply(arr, x) # The result is stored in reverse order in the array return ''.join(map(str, reversed(arr))) # Input a large number try: number = int(input("Enter a large number to calculate its factorial: ")) result = factorial_large_number_array(number) print(f"The factorial of {number} is:\n{result}") except ValueError: print("Invalid input! Please enter a valid integer.")
DeepSeek-V3
要使用Python中的數組計算大數量的階乘,我們可以將結果存儲在數組(或列表)中,以處理超過標準數據類型限制的非常大的數字。您可以實現以下方式:
生成代碼的輸出def multiply(x, res, res_size): """Multiplies x with the number represented by res[]""" carry = 0 for i in range(res_size): prod = res[i] * x + carry res[i] = prod % 10 carry = prod // 10 while carry: res.append(carry % 10) carry = carry // 10 def factorial(n): """ Calculates the factorial of a number n""" res = [1] res_size = 1 for i in range(2, n + 1): multiply(i, res, res_size) res_size = len(res) return res def print_factorial(n): """ Prints the factorial of a number n""" res = factorial(n) print("Factorial of", n, "is:") for digit in reversed(res): print(digit, end="") # Example usage: n = 55 print_factorial(n)
比較結果
>建議:
用於實際用途的
>:
生成代碼的輸出
>這是一個python解決方案,該解決方案最多可以在刪除一個字符後檢查字符串是否可以是文安。 生成代碼的輸出
def factorial(n): # Initialize the result as a list with 1 result = [1] # Multiply the result list with numbers from 2 to n for x in range(2, n + 1): carry = 0 # Multiply each digit in the result list with x for i in range(len(result)): product = result[i] * x + carry result[i] = product % 10 # Store the last digit carry = product // 10 # Carry over the remaining digits # Add the remaining carry to the result list while carry > 0: result.append(carry % 10) carry = carry // 10 # Reverse the result list to get the correct order result.reverse() return result # Input: Number to find factorial of n = int(input("Enter a number: ")) # Compute factorial factorial_result = factorial(n) # Convert the list of digits to a string for display factorial_str = ''.join(map(str, factorial_result)) # Output the result print(f"Factorial of {n} is: {factorial_str}")
> 生成代碼的輸出
def multiply(arr, x): """ Multiplies an array representation of a number with an integer x. : param arr: List of integers representing the digits of the number. : param x: Integer to multiply with. :return: Updated array with the result. """ carry = 0 # Initialize carry for i in range(len(arr)): prod = arr[i] * x + carry arr[i] = prod % 10 # Store last digit of the product in the array carry = prod // 10 # Update the carry # Process carry, add digits to the array while carry > 0: arr.append(carry % 10) carry //= 10 return arr def factorial_large_number_array(n): """ Calculate the factorial of a large number using array representation. : param n: Integer for which the factorial is to be computed. :return: Factorial of n as a string. """ if n < 0: return "Factorial is not defined for negative numbers." if n == 0 or n == 1: return "1" arr = [1] # Initialize the array with the first factorial value (1) for x in range(2, n + 1): arr = multiply(arr, x) # The result is stored in reverse order in the array return ''.join(map(str, reversed(arr))) # Input a large number try: number = int(input("Enter a large number to calculate its factorial: ")) result = factorial_large_number_array(number) print(f"The factorial of {number} is:\n{result}") except ValueError: print("Invalid input! Please enter a valid integer.")
比較見解
GPT-4O的響應是最完整且有據可查的響應。它以清晰度處理核心功能,使未來的開發人員可以輕鬆修改或擴展代碼。它的效率和清晰文檔的結合使其非常適合生產環境。
用於實際用途的
>
:GPT-4O響應是最好的,因為其詳盡的文檔,清晰的結構和可讀性。 出於教育目的,
>以上是DeepSeek-V3與GPT-4O vs Llama 3.3 70b:找到最佳的AI模型的詳細內容。更多資訊請關注PHP中文網其他相關文章!