本文探討了放射線學和多層感知器(MLP)的應用,以改善使用MRI掃描的腦腫瘤檢測和分類。放射線學提取了來自MRI圖像中感興趣區域的定量特徵(形狀,紋理,統計特性),提供了一個比單獨進行分析的更豐富的數據集。然後,這些功能用於訓練MLP(一種神經網絡),以將掃描分類為包含腫瘤(“是”)或不(“否”)。
關鍵學習點:
- Handcrafted Feature Extraction with Radiomics: The article details the process of extracting radiomic features, emphasizing their role in capturing complex tumor characteristics not readily apparent in visual analysis.
- MRI Scan Analysis Enhancement: Radiomics significantly improves the speed and accuracy of tumor detection and classification from MRI scans.
- Multi-Class Classification: The extracted features are utilized to classify brain scans into distinct categories (in this case, tumor present or absent).
- MLP for Classification: The article demonstrates the use of an MLP for robust classification based on the extracted radiomic features.
方法論概述:
該研究利用了Kaggle的腦瘤數據集。該過程涉及:
- Data Preparation: Loading images and creating binary masks to define the region of interest (ROI) for feature extraction.
- Feature Extraction: Employing the PyRadiomics library to extract a wide range of radiomic features from the masked ROIs.
- Data Preprocessing: Cleaning and standardizing the extracted features, handling missing values, and preparing the data for the MLP.這包括將分類標籤(“是”/“否”)轉換為數值表示(1/0)。
- MLP Model Training: Building and training a two-hidden-layer MLP using PyTorch.該模型是使用ADAM優化器和交叉滲透損失函數訓練的。輟學正規化用於防止過度擬合。
- Model Evaluation: Assessing the trained MLP's performance on a held-out test set using accuracy as the evaluation metric. A loss curve is plotted to visualize the training process.
結果和結論:
受過訓練的MLP在測試數據集上達到了高精度(94.50%),證明了放射線組織組合和MLP方法在腦腫瘤分類中的有效性。文章得出的結論是,這種方法在診斷效率和準確性方面有了顯著提高,可以幫助醫療保健專業人員做出更快,更明智的決定。




(注意:根據要求包含圖像,維護其原始格式和位置。為簡潔起見,省略了代碼段,但總結了核心步驟和結果。)
以上是使用放射線學和MLP對MRI掃描進行分類的詳細內容。更多資訊請關注PHP中文網其他相關文章!