Python中dictionary items()系列函数的用法实例
本文实例讲述了Python中dictionary items()系列函数的用法,对Python程序设计有很好的参考借鉴价值。具体分析如下:
先来看一个示例:
import html # available only in Python 3.x def make_elements(name, value, **attrs): keyvals = [' %s="%s"' % item for item in attrs.items()] attr_str = ''.join(keyvals) element = '<{name}{attrs}>{value}</{name}>'.format( name = name, attrs = attr_str, value = html.escape(value)) return element make_elements('item', 'Albatross', size='large', quantity=6) make_elements('p', '<spam>')
该程序的作用很简单,就是生成HTML标签,注意html这个模块只能在Python 3.x才有。
起初我只是注意到,生成标签属性列表的keyvals这个dictionary类型变量构建的方式很有意思,两个%s对应一个item,所以就查阅了相关的资料,结果扯出了挺多的东西,在此一并总结。
注:下面所有Python解释器使用的版本,2.x 对应的是2.7.3,3.x 对应的是3.4.1
在 Python 2.x 里,官方文档里items的方法是这么说明:生成一个 (key, value) 对的list,就像下面这样:
>>> d = {'size': 'large', 'quantity': 6} >>> d.items() [('quantity', 6), ('size', 'large')]
在搜索的过程中,无意看到stackoverflow上这样一个问题:dict.items()和dict.iteritems()有什么区别? ,第一个答案大致的意思是这样的:
“起初 items() 就是返回一个像上面那样的包含dict所有元素的list,但是由于这样太浪费内存,所以后来就加入了(注:在Python 2.2开始出现的)iteritems(), iterkeys(), itervalues()这一组函数,用于返回一个 iterator 来节省内存,但是在 3.x 里items() 本身就返回这样的 iterator,所以在 3.x 里items() 的行为和 2.x 的 iteritems() 行为一致,iteritems()这一组函数就废除了。”
不过更加有意思的是,这个答案虽然被采纳,下面的评论却指出,这种说法并不准确,在 3.x 里 items() 的行为和 2.x 的 iteritems() 不一样,它实际上返回的是一个"full sequence-protocol object",这个对象能够反映出 dict 的变化,后来在 Python 2.7 里面也加入了另外一个函数 viewitems() 和 3.x 的这种行为保持一致
为了证实评论中的说法,我做了下面的测试,注意观察测试中使用的Python版本:
测试1(Python 2.7.3):
Python 2.7.3 (default, Feb 27 2014, 19:58:35) [GCC 4.6.3] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> d = {'size': 'large', 'quantity': 6} >>> il = d.items() >>> it = d.iteritems() >>> vi = d.viewitems() >>> il [('quantity', 6), ('size', 'large')] >>> it <dictionary-itemiterator object at 0x7fe555159f18> >>> vi dict_items([('quantity', 6), ('size', 'large')])
测试2(Python 3.4.1):
Python 3.4.1 (default, Aug 12 2014, 16:43:01) [GCC 4.9.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> d = {'size': 'large', 'quantity': 6} >>> il = d.items() >>> it = d.iteritems() Traceback (most recent call last): File "<stdin>", line 1, in <module> AttributeError: 'dict' object has no attribute 'iteritems' >>> vi = d.viewitems() Traceback (most recent call last): File "<stdin>", line 1, in <module> AttributeError: 'dict' object has no attribute 'viewitems' >>> il dict_items([('size', 'large'), ('quantity', 6)])
可以看到在 Python 3.x 里面,iteritems() 和 viewitems() 这两个方法都已经废除了,而 item() 得到的结果是和 2.x 里面 viewitems() 一致的。
2.x 里 iteritems() 和 viewitems() 返回的内容都是可以用 for 来遍历的,像下面这样
>>> for k, v in it: ... print k, v ... quantity 6 size large >>> for k, v in vi: ... print k, v ... quantity 6 size large
这两者的区别体现在哪里呢?viewitems() 返回的是view object,它可以反映出 dictionary 的变化,比如上面的例子,假如在使用 it 和 vi 这两个变量之前,向 d 里面添加一个key-value组合,区别就很容易看出来了。
>>> it = d.iteritems() >>> vi = d.viewitems() >>> d['newkey'] = 'newvalue' >>> d {'newkey': 'newvalue', 'quantity': 6, 'size': 'large'} >>> vi dict_items([('newkey', 'newvalue'), ('quantity', 6), ('size', 'large')]) >>> it <dictionary-itemiterator object at 0x7f50ab898f70> >>> for k, v in vi: ... print k, v ... newkey newvalue quantity 6 size large >>> for k, v in it: ... print k, v ... Traceback (most recent call last): File "<stdin>", line 1, in <module> RuntimeError: dictionary changed size during iteration
在第三行中,我们像 d 里面插入了一个新的元素,vi 可以继续遍历,而且新的遍历能够反映出 d 的变化,但是在遍历 it 的时候,报错提示 dictionary 在遍历的时候大小发生了变化,遍历失败。
总结起来,在 2.x 里面,最初是 items() 这个方法,但是由于太浪费内存,所以加入了 iteritems() 方法,用于返回一个 iterator,在 3.x 里面将 items() 的行为修改成返回一个 view object,让它返回的对象同样也可以反映出原 dictionary 的变化,同时在 2.7 里面又加入了 viewitems() 向下兼容这个特性。
所以在 3.x 里面不需要再去纠结于三者的不同之处,因为只保留了一个 items() 方法。
相信本文所述示例对大家的Python程序设计有一定的借鉴价值。

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

MySQL 有免費的社區版和收費的企業版。社區版可免費使用和修改,但支持有限,適合穩定性要求不高、技術能力強的應用。企業版提供全面商業支持,適合需要穩定可靠、高性能數據庫且願意為支持買單的應用。選擇版本時考慮的因素包括應用關鍵性、預算和技術技能。沒有完美的選項,只有最合適的方案,需根據具體情況謹慎選擇。

HadiDB:輕量級、高水平可擴展的Python數據庫HadiDB(hadidb)是一個用Python編寫的輕量級數據庫,具備高度水平的可擴展性。安裝HadiDB使用pip安裝:pipinstallhadidb用戶管理創建用戶:createuser()方法創建一個新用戶。 authentication()方法驗證用戶身份。 fromhadidb.operationimportuseruser_obj=user("admin","admin")user_obj.

MySQL Workbench 可以連接 MariaDB,前提是配置正確。首先選擇 "MariaDB" 作為連接器類型。在連接配置中,正確設置 HOST、PORT、USER、PASSWORD 和 DATABASE。測試連接時,檢查 MariaDB 服務是否啟動,用戶名和密碼是否正確,端口號是否正確,防火牆是否允許連接,以及數據庫是否存在。高級用法中,使用連接池技術優化性能。常見錯誤包括權限不足、網絡連接問題等,調試錯誤時仔細分析錯誤信息和使用調試工具。優化網絡配置可以提升性能

直接通過 Navicat 查看 MongoDB 密碼是不可能的,因為它以哈希值形式存儲。取回丟失密碼的方法:1. 重置密碼;2. 檢查配置文件(可能包含哈希值);3. 檢查代碼(可能硬編碼密碼)。

無法連接 MySQL 可能是由於以下原因:MySQL 服務未啟動、防火牆攔截連接、端口號錯誤、用戶名或密碼錯誤、my.cnf 中的監聽地址配置不當等。排查步驟包括:1. 檢查 MySQL 服務是否正在運行;2. 調整防火牆設置以允許 MySQL 監聽 3306 端口;3. 確認端口號與實際端口號一致;4. 檢查用戶名和密碼是否正確;5. 確保 my.cnf 中的 bind-address 設置正確。

MySQL 可在無需網絡連接的情況下運行,進行基本的數據存儲和管理。但是,對於與其他系統交互、遠程訪問或使用高級功能(如復制和集群)的情況,則需要網絡連接。此外,安全措施(如防火牆)、性能優化(選擇合適的網絡連接)和數據備份對於連接到互聯網的 MySQL 數據庫至關重要。

MySQL數據庫性能優化指南在資源密集型應用中,MySQL數據庫扮演著至關重要的角色,負責管理海量事務。然而,隨著應用規模的擴大,數據庫性能瓶頸往往成為製約因素。本文將探討一系列行之有效的MySQL性能優化策略,確保您的應用在高負載下依然保持高效響應。我們將結合實際案例,深入講解索引、查詢優化、數據庫設計以及緩存等關鍵技術。 1.數據庫架構設計優化合理的數據庫架構是MySQL性能優化的基石。以下是一些核心原則:選擇合適的數據類型選擇最小的、符合需求的數據類型,既能節省存儲空間,又能提升數據處理速度

作為數據專業人員,您需要處理來自各種來源的大量數據。這可能會給數據管理和分析帶來挑戰。幸運的是,兩項 AWS 服務可以提供幫助:AWS Glue 和 Amazon Athena。
