实例探究Python以并发方式编写高性能端口扫描器的方法
关于端口扫描器
端口扫描工具(Port Scanner)指用于探测服务器或主机开放端口情况的工具。常被计算机管理员用于确认安全策略,同时被攻击者用于识别目标主机上的可运作的网络服务。
端口扫描定义是客户端向一定范围的服务器端口发送对应请求,以此确认可使用的端口。虽然其本身并不是恶意的网络活动,但也是网络攻击者探测目标主机服务,以利用该服务的已知漏洞的重要手段。端口扫描的主要用途仍然只是确认远程机器某个服务的可用性。
扫描多个主机以获取特定的某个端口被称为端口清扫(Portsweep),以此获取特定的服务。例如,基于SQL服务的计算机蠕虫就会清扫大量主机的同一端口以在 1433 端口上建立TCP连接。
Python实现
端口扫描器原理很简单,无非就是操作socket,能connect就认定这个端口开放着。
import socket def scan(port): s = socket.socket() if s.connect_ex(('localhost', port)) == 0: print port, 'open' s.close() if __name__ == '__main__': map(scan,range(1,65536))
这样一个最简单的端口扫描器出来了。
等等喂,半天都没反应,那是因为socket是阻塞的,每次连接要等很久才超时。
我们自己给它加上的超时。
s.settimeout(0.1)
再跑一遍,感觉快多了。
多线程版本
import socket import threading def scan(port): s = socket.socket() s.settimeout(0.1) if s.connect_ex(('localhost', port)) == 0: print port, 'open' s.close() if __name__ == '__main__': threads = [threading.Thread(target=scan, args=(i,)) for i in xrange(1,65536)] map(lambda x:x.start(),threads)
运行一下,哇,好快,快到抛出错误了。thread.error: can't start new thread。
想一下,这个进程开启了65535个线程,有两种可能,一种是超过最大线程数了,一种是超过最大socket句柄数了。在linux可以通过ulimit来修改。
如果不修改最大限制,怎么用多线程不报错呢?
加个queue,变成生产者-消费者模式,开固定线程。
多线程+队列版本
import socket import threading from Queue import Queue def scan(port): s = socket.socket() s.settimeout(0.1) if s.connect_ex(('localhost', port)) == 0: print port, 'open' s.close() def worker(): while not q.empty(): port = q.get() try: scan(port) finally: q.task_done() if __name__ == '__main__': q = Queue() map(q.put,xrange(1,65535)) threads = [threading.Thread(target=worker) for i in xrange(500)] map(lambda x:x.start(),threads) q.join()
这里开500个线程,不停的从队列取任务来做。
multiprocessing+队列版本
总不能开65535个进程吧?还是用生产者消费者模式
import multiprocessing def scan(port): s = socket.socket() s.settimeout(0.1) if s.connect_ex(('localhost', port)) == 0: print port, 'open' s.close() def worker(q): while not q.empty(): port = q.get() try: scan(port) finally: q.task_done() if __name__ == '__main__': q = multiprocessing.JoinableQueue() map(q.put,xrange(1,65535)) jobs = [multiprocessing.Process(target=worker, args=(q,)) for i in xrange(100)] map(lambda x:x.start(),jobs)
注意这里把队列作为一个参数传入到worker中去,因为是process safe的queue,不然会报错。
还有用的是JoinableQueue(),顾名思义就是可以join()的。
gevent的spawn版本
from gevent import monkey; monkey.patch_all(); import gevent import socket ... if __name__ == '__main__': threads = [gevent.spawn(scan, i) for i in xrange(1,65536)] gevent.joinall(threads)
注意monkey patch必须在被patch的东西之前import,不然会Exception KeyError.比如不能先import threading,再monkey patch.
gevent的Pool版本
from gevent import monkey; monkey.patch_all(); import socket from gevent.pool import Pool ... if __name__ == '__main__': pool = Pool(500) pool.map(scan,xrange(1,65536)) pool.join()
concurrent.futures版本
import socket from Queue import Queue from concurrent.futures import ThreadPoolExecutor ... if __name__ == '__main__': q = Queue() map(q.put,xrange(1,65536)) with ThreadPoolExecutor(max_workers=500) as executor: for i in range(500): executor.submit(worker,q)

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

VS Code 擴展存在惡意風險,例如隱藏惡意代碼、利用漏洞、偽裝成合法擴展。識別惡意擴展的方法包括:檢查發布者、閱讀評論、檢查代碼、謹慎安裝。安全措施還包括:安全意識、良好習慣、定期更新和殺毒軟件。

在 VS Code 中,可以通過以下步驟在終端運行程序:準備代碼和打開集成終端確保代碼目錄與終端工作目錄一致根據編程語言選擇運行命令(如 Python 的 python your_file_name.py)檢查是否成功運行並解決錯誤利用調試器提升調試效率
