首頁 後端開發 Python教學 Python的Flask框架中使用Flask-SQLAlchemy管理数据库的教程

Python的Flask框架中使用Flask-SQLAlchemy管理数据库的教程

Jun 16, 2016 am 08:47 AM
flask flask-sqlalchemy python 資料庫

使用Flask-SQLAlchemy管理数据库
Flask-SQLAlchemy是一个Flask扩展,它简化了在Flask应用程序中对SQLAlchemy的使用。SQLAlchemy是一个强大的关系数据库框架,支持一些数据库后端。提供高级的ORM和底层访问数据库的本地SQL功能。
和其他扩展一样,通过pip安装Flask-SQLAlchemy:

(venv) $ pip install flask-sqlalchemy
登入後複製

在Flask-SQLAlchemy,数据库被指定为URL。表格列出三个最受欢迎的数据库引擎url的格式:

2016614153005287.png (482×148)

在这些URL中,hostname是指托管MySQL服务的服务器,可能是本地(localhost)又或是远程服务器。数据库服务器可以托管多个数据库,所以database指出要使用的数据库名。数据库需要身份验证,username和 password是数据库用户凭证。
注:> SQLite数据库没有服务,所以hostname、username和password可以缺省且数据库是一个磁盘文件名。
应用程序数据库URL必须在Flask配置对象中的SQLALCHEMY_DATABASE_URI键中进行配置。另一个有用的选项是SQLALCHEMY_COMMIT_ON_TEARDOWN,可以设置为True来启用自动提交数据库更改在每个请求中。查阅Flask-SQLAlchemy文档获取更多其他配置选项。

from flask.ext.sqlalchemy import SQLAlchemy

basedir = os.path.abspath(os.path.dirname(__file__))

app = Flask(__name__)
app.config['SQLALCHEMY_DATABASE_URI'] =\
  'sqlite:///' + os.path.join(basedir, 'data.sqlite')
app.config['SQLALCHEMY_COMMIT_ON_TEARDOWN'] = True

db = SQLAlchemy(app)

登入後複製

由SQLAlchemy实例化的db对象表示数据库且提供访问Flask-SQLAlchemy的所有功能。


模型定义
模型是指由应用程序使用的持久化实体。在ORM的背景下,一个模型通常是一个带有属性的Python类,其属性与数据库表的列相匹配对应。Flask-SQLAlchemy数据库实例提供了一个基类以及一组辅助类和函数用于定义它的结构。

class Role(db.Model):
  __tablename__ = 'roles'
  id = db.Column(db.Integer, primary_key=True) 
  name = db.Column(db.String(64), unique=True)

  def __repr__(self):
    return '<Role %r>' % self.name

class User(db.Model):
  __tablename__ = 'users'
  id = db.Column(db.Integer, primary_key=True)
  username = db.Column(db.String(64), unique=True, index=True)

def __repr__(self):
  return '<User %r>' % self.username

登入後複製

__tablename__类变量定义数据库中表的名称。如果__tablename__缺省Flask-SQLAlchemy会指定默认的表名,但是这些缺省名称不遵守使用复数命名的约定,所以最好是显式命名表名。其余的变量是模型的属性,被定义为db.Column类的实例。
传给db.Column构造函数的第一个参数是数据库列的类型也就是模型属性的数据类型。表格5-2列出一些可用的列的类型,也是用于模型中的Python类型。

2016614153056823.png (488×494)

最常见的SQLAlchemy列类型
db.Column剩余的参数为每个属性指定了配置选项。

2016614153118002.png (489×192)

最常见的SQLAlchemy列选项
注:Flask-SQLAlchemy需要给所有的模型定义主键列,通常命名为id。
两个模型都包含了repr()方法来给它们显示一个可读字符串,虽然不是完全必要,不过用于调试和测试还是很不错的。

关系
关系数据库通过使用关系在不同的表中建立连接。关系图表达了用户和用户角色之间的简单关系。这个角色和用户是一对多关系,因为一个角色可以从属于多个用户,而一个用户只能拥有一个角色。
下面的模型类展示了中表达的一对多关系。

class Role(db.Model): 
  # ...
  users = db.relationship('User', backref='role')

class User(db.Model): 
  # ...
  role_id = db.Column(db.Integer, db.ForeignKey('roles.id'))

登入後複製

关系通过使用外键来连接两行。添加给User模型的role_id列被定义为外键,且建立关系。db.ForeignKey()的参数roles.id指定的列应该理解为在roles表的行中持有id值的列。
添加到Role模型的users属性表现了关系的面向对象的观点。给定Role类的实例,users属性会返回一组连接到该角色的用户。指定给db.relationship()的第一个参数表明模型中关系的另一边。如果类还未定义,这个模型可以作为字符串提供。
注意:之前在segmentdefault中遇到的问题,后来粗略阅读了SQLAlchemy的源码。ForeignKey类的column接收三种类型的参数,一种是“模型名.属性名”;一种是“表名.列名”,最后一种没看明白,下次试着用一下。
db.relationship()的backref参数通过给User模型增加role属性来定义反向关系。这个属性可以替代role_id访问Role模型,是作为对象而不是外键。
大多数情况下db.relationship()可以定位自己的外键关系,但是有时候不能确定哪个列被用作外键。例如,如果User模型有两个或更多列被定义为Role的外键,SQLAlchemy将不知道使用两个中的哪一个。每当外键配置模棱两可的时候,就必须使用额外参数db.relationship()。下标列出一些常用配置选项用于定义关系:

常用SQLAlchemy关系选项

2016614153210518.png (570×292)

建议:如果你有克隆在GitHub上的应用程序,你现在可以运行git checkout 5a来切换到这个版本的应用程序。
除了一对多关系还有其他种类关系。一对一关系可以表述为前面描述的一对多关系,只要将db.relationship()中的uselist选项设置为False,“多”就变为“一”了。多对一关系也可表示为将表反转后的一对多关系,或表示为外键和db.relationship()定义在“多”那边。最复杂的关系类型,多对多,需要一个被称作关联表的额外表。你将在第十二章学习多对多关系。

数据库操作
学习怎样使用模型的最好方式就是使用Python shell。以下部分将介绍最常见的数据库操作。

创建表

首先要做的第一件事情就是指示Flask-SQLAlchemy基于模型类创建数据库。db.create_all()函数会完成这些:

(venv) $ python hello.py shell 
>>> from hello import db
>>> db.create_all()
登入後複製

如果你检查应用程序目录,你会发现名为data.sqlite的新文件,SQLite数据库名在配置中给出。如果数据库已存在db.create_all()函数不会重新创建或更新数据库表。这会非常的不方便当模型被修改且更改需要应用到现有的数据库时。更新现有的数据库表的蛮力解决方案是先删除旧的表:

>>> db.drop_all()
>>> db.create_all()
登入後複製

不幸的是,这种方法有个不受欢迎的副作用就是摧毁旧的数据库中的所有数据。更新数据库问题的解决方案会在这章快结束的时候介绍。

插入行

下面的示例会创建新的角色和用户:

>>> from hello import Role, User
>>> admin_role = Role(name='Admin')
>>> mod_role = Role(name='Moderator')
>>> user_role = Role(name='User')
>>> user_john = User(username='john', role=admin_role) 
>>> user_susan = User(username='susan', role=user_role) 
>>> user_david = User(username='david', role=user_role)
登入後複製

模型的构造函数接受模型属性的初始值作为关键字参数。注意,甚至可以使用role属性,即使它不是一个真正的数据库列,而是一对多关系的高级表示。这些新对象的id属性没有显式设置:主键由Flask-SQLAlchemy来管理。到目前为止对象只存于Python中,他们还没有被写入数据库。因为他们的id值尚未分配:

>>> print(admin_role.id) None
>>> print(mod_role.id) None
>>> print(user_role.id) None
登入後複製

修改数据库的操作由Flask-SQLAlchemy提供的db.session数据库会话来管理。准备写入到数据库中的对象必须添加到会话中:

>>> db.session.add(admin_role)
>>> db.session.add(mod_role)
>>> db.session.add(user_role)
>>> db.session.add(user_john)
>>> db.session.add(user_susan)
>>> db.session.add(user_david)
登入後複製

或,更简洁的:

>>> db.session.add_all([admin_role, mod_role, user_role,
...   user_john, user_susan, user_david])
登入後複製
为了写对象到数据库,需要通过它的commit()方法来提交会话:

>>> db.session.commit()
登入後複製

再次检查id属性;这个时候它们都已经被设置好了:

>>> print(admin_role.id) 
1
>>> print(mod_role.id)
2
>>> print(user_role.id) 
3
登入後複製

注:db.session数据库会话和第四章讨论的Flask会话没有任何联系。数据库会话也叫事务。
数据库会话在数据库一致性上是非常有用的。提交操作会原子性地将所有添加到会话中的对象写入数据库。如果在写入的过程发生错误,会将整个会话丢弃。如果你总是在一个会话提交相关修改,你必须保证避免因部分更新导致的数据库不一致的情况。

注:数据库会话也可以回滚。如果调用db.session.rollback(),任何添加到数据库会话中的对象都会恢复到它们曾经在数据库中的状态。
修改行

数据库会话中的add()方法同样可以用于更新模型。继续在同一shell会话中,下面的示例重命名“Admin”角色为“Administrator”:

>>> admin_role.name = 'Administrator'
>>> db.session.add(admin_role)
>>> db.session.commit()
登入後複製

注意:不过貌似我们在做更新操作的时候都不使用db.session.add(),而是直接使用db.session.commit()来提交事务。
删除行

数据库会话同样有delete()方法。下面的示例从数据库中删除“Moderator”角色:

>>> db.session.delete(mod_role)
>>> db.session.commit()
登入後複製

注意删除,和插入更新一样,都是在数据库会话提交后执行。

返回行

Flask-SQLAlchemy为每个模型类创建一个query对象。最基本的查询模型是返回对应的表的全部内容:

>>> Role.query.all()
[<Role u'Administrator'>, <Role u'User'>]
>>> User.query.all()
[<User u'john'>, <User u'susan'>, <User u'david'>]
登入後複製

使用过滤器可以配置查询对象去执行更具体的数据库搜索。下面的例子查找所有被分配“User”角色的用户:

>>> User.query.filter_by(role=user_role).all()
[<User u'susan'>, <User u'david'>]
登入後複製

对于给定的查询还可以检查SQLAlchemy生成的原生SQL查询,并将查询对象转换为一个字符串:

>>> str(User.query.filter_by(role=user_role))
'SELECT users.id AS users_id, users.username AS users_username,
users.role_id AS users_role_id FROM users WHERE :param_1 = users.role_id'
登入後複製

如果你退出shell会话,在前面的示例中创建的对象将不能作为Python对象而存在,但可继续作为行记录存在各自的数据库表中。如果你开始一个全新的shell会话,你必须从它们的数据库行中重新创建Python对象。下面的示例执行查询来加载名字为“User”的用户角色。

>>> user_role = Role.query.filter_by(name='User').first()
登入後複製

过滤器如filter_by()通过query对象来调用,且返回经过提炼后的query。多个过滤器可以依次调用直到需要的查询配置结束为止。

下面展示一些查询中常用的过滤器。

2016614153423667.png (516×198)

在需要的过滤器已经全部运用于query后,调用all()会触发query执行并返回一组结果,但是除了all()以外还有其他方式可以触发执行。常用SQLAlchemy查询执行器:

2016614153439331.png (560×224)

关系的原理类似于查询。下面的示例从两边查询角色和用户之间的一对多关系:

>>> users = user_role.users
>>> users
[<User u'susan'>, <User u'david'>]
>>> users[0].role
<Role u'User'>
登入後複製

此处的user_role.users查询有点小问题。当user_role.users表达式在内部调用all()时通过隐式查询执行来返回用户的列表。因为查询对象是隐藏的,是不可能通过附加查询过滤器进一步提取出来。在这个特定的例子中,它可能是用于按字母排列顺序返回用户列表。在下面的示例中,被lazy = 'dynamic'参数修改过的关系配置的查询是不会自动执行的。

app/models.py:动态关系

class Role(db.Model): 
  # ...
  users = db.relationship('User', backref='role', lazy='dynamic') 
  # ...
登入後複製

用这种方式配置关系,user_roles.user查询还没有执行,所以可以给它增加过滤器:

>>> user_role.users.order_by(User.username).all()
[<User u'david'>, <User u'susan'>]
>>> user_role.users.count()
2

登入後複製
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
4 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

mysql 是否要付費 mysql 是否要付費 Apr 08, 2025 pm 05:36 PM

MySQL 有免費的社區版和收費的企業版。社區版可免費使用和修改,但支持有限,適合穩定性要求不高、技術能力強的應用。企業版提供全面商業支持,適合需要穩定可靠、高性能數據庫且願意為支持買單的應用。選擇版本時考慮的因素包括應用關鍵性、預算和技術技能。沒有完美的選項,只有最合適的方案,需根據具體情況謹慎選擇。

HadiDB:Python 中的輕量級、可水平擴展的數據庫 HadiDB:Python 中的輕量級、可水平擴展的數據庫 Apr 08, 2025 pm 06:12 PM

HadiDB:輕量級、高水平可擴展的Python數據庫HadiDB(hadidb)是一個用Python編寫的輕量級數據庫,具備高度水平的可擴展性。安裝HadiDB使用pip安裝:pipinstallhadidb用戶管理創建用戶:createuser()方法創建一個新用戶。 authentication()方法驗證用戶身份。 fromhadidb.operationimportuseruser_obj=user("admin","admin")user_obj.

mysql:簡單的概念,用於輕鬆學習 mysql:簡單的概念,用於輕鬆學習 Apr 10, 2025 am 09:29 AM

MySQL是一個開源的關係型數據庫管理系統。 1)創建數據庫和表:使用CREATEDATABASE和CREATETABLE命令。 2)基本操作:INSERT、UPDATE、DELETE和SELECT。 3)高級操作:JOIN、子查詢和事務處理。 4)調試技巧:檢查語法、數據類型和權限。 5)優化建議:使用索引、避免SELECT*和使用事務。

mysql workbench 可以連接到 mariadb 嗎 mysql workbench 可以連接到 mariadb 嗎 Apr 08, 2025 pm 02:33 PM

MySQL Workbench 可以連接 MariaDB,前提是配置正確。首先選擇 "MariaDB" 作為連接器類型。在連接配置中,正確設置 HOST、PORT、USER、PASSWORD 和 DATABASE。測試連接時,檢查 MariaDB 服務是否啟動,用戶名和密碼是否正確,端口號是否正確,防火牆是否允許連接,以及數據庫是否存在。高級用法中,使用連接池技術優化性能。常見錯誤包括權限不足、網絡連接問題等,調試錯誤時仔細分析錯誤信息和使用調試工具。優化網絡配置可以提升性能

Navicat查看MongoDB數據庫密碼的方法 Navicat查看MongoDB數據庫密碼的方法 Apr 08, 2025 pm 09:39 PM

直接通過 Navicat 查看 MongoDB 密碼是不可能的,因為它以哈希值形式存儲。取回丟失密碼的方法:1. 重置密碼;2. 檢查配置文件(可能包含哈希值);3. 檢查代碼(可能硬編碼密碼)。

mysql 無法連接到本地主機怎麼解決 mysql 無法連接到本地主機怎麼解決 Apr 08, 2025 pm 02:24 PM

無法連接 MySQL 可能是由於以下原因:MySQL 服務未啟動、防火牆攔截連接、端口號錯誤、用戶名或密碼錯誤、my.cnf 中的監聽地址配置不當等。排查步驟包括:1. 檢查 MySQL 服務是否正在運行;2. 調整防火牆設置以允許 MySQL 監聽 3306 端口;3. 確認端口號與實際端口號一致;4. 檢查用戶名和密碼是否正確;5. 確保 my.cnf 中的 bind-address 設置正確。

如何針對高負載應用程序優化 MySQL 性能? 如何針對高負載應用程序優化 MySQL 性能? Apr 08, 2025 pm 06:03 PM

MySQL數據庫性能優化指南在資源密集型應用中,MySQL數據庫扮演著至關重要的角色,負責管理海量事務。然而,隨著應用規模的擴大,數據庫性能瓶頸往往成為製約因素。本文將探討一系列行之有效的MySQL性能優化策略,確保您的應用在高負載下依然保持高效響應。我們將結合實際案例,深入講解索引、查詢優化、數據庫設計以及緩存等關鍵技術。 1.數據庫架構設計優化合理的數據庫架構是MySQL性能優化的基石。以下是一些核心原則:選擇合適的數據類型選擇最小的、符合需求的數據類型,既能節省存儲空間,又能提升數據處理速度

如何將 AWS Glue 爬網程序與 Amazon Athena 結合使用 如何將 AWS Glue 爬網程序與 Amazon Athena 結合使用 Apr 09, 2025 pm 03:09 PM

作為數據專業人員,您需要處理來自各種來源的大量數據。這可能會給數據管理和分析帶來挑戰。幸運的是,兩項 AWS 服務可以提供幫助:AWS Glue 和 Amazon Athena。

See all articles