目錄
最大子序列和算法分析,子序列算法分析
首頁 後端開發 php教程 最大子序列和算法分析,子序列算法分析_PHP教程

最大子序列和算法分析,子序列算法分析_PHP教程

Jul 13, 2016 am 09:45 AM
演算法分析

最大子序列和算法分析,子序列算法分析

问题描述:给定n个整数序列{a1,a2,...,an},求函数f(i,j)=max{0,Σak}(k:连续的从i取到j);

问题即为求已连续子列和的最大值,若果最大值为负数则取0,比如8个数序列{-1,2,-3,4,-2,5,-8,3},那摩最大子序列和为4+(-2)+5=7.

这个问题有四种不同复杂度的算法,算法1到四的时间复杂度是O(n3),O(n2),O(nlogn),O(n);

算法一

最直接的方法是穷举法,列出所有的情况,我们可以设定子序列的左端i和右端j,再利用一层计算出a[i]到a[j]的和.

//最大子列和穷举法
#include
using namespace std;
int Find_Maxsun(int*a, int n);
int main(){
int n, i;
int a[100];
cin >> n;
cout for (i = 0; i cin >> a[i];
cout return 0;
}
int Find_Maxsun(int*a, int n){
int MaxSun = 0, i, j, k;
int NowSum;
for (i = 0; i for (j = 0; j NowSum = 0;
for (k = i; k NowSum += a[k]; /*从a[i]到a[j]的子序列*/
if (NowSum>MaxSun)
MaxSun = NowSum; /*更新结果*/
}
return MaxSun;
}

很显然,暴力法使用啦3重for循环,算法时间复杂度为O(n3),这当然也是一个最笨的算法,但数据难非常庞大时候,哪怕是要算到死的节奏,我们可以清楚看到第三层for循环,

j每加一次,子列和都要重头算一次,那我们为何不去利用j-1的结果呢?也就是说我们将j-1的结果保存下来,在计算j步的结果时候,只需要在j-1步的基础上再加上a[j],就可以啦,于是有啦算法二。

算法二:

#include
using namespace std;
int Find_Maxsun2(int*a, int n);
int main(){
int n, i;
int a[100];
cin >> n;
cout for (i = 0; i cin >> a[i];
cout return 0;
}
int Find_Maxsun2(int*a, int n){
int i, j, NewSum = 0, MaxSum= 0;
for (i = 0; i NewSum = 0;
for (j = i; j NewSum += a[j]; /*每一次在j-1条件下更新NewSum*/
if (NewSum>MaxSum) /*更新MaxSum*/
MaxSum = NewSum;
}
}
return MaxSum;
}

这个算法比1聪明,算法复杂度是O(n2),显然还不是我们想要的复杂度。

算法三:

算法三使用的是分治法的思想,基本思想不言而喻先分后治,将问题分解为小问题然后在可以总和小问题来解决,我们把原序列一分为二,那么最大子序列在左边,在右边,或者跨越边界,基本思路如下:

第一步:将原序列一分为二,分成左序列和右序列。

第二步:递归求出子序列S左和S右。

第三部:从中分线向两边扫描,找出跨越中线的最大子序列和S中。

第四步:求得S=max{S左,S中,S右};

代码实现如下:

#include
using namespace std;
int Find_MaxSum3(int*a,int low,int high);
int Max(int a,int b,int c);
int main(){
int n, i;
int a[100];
cin >> n;
cout for (i = 0; i cin >> a[i];
cout return 0;
}
int Find_MaxSum3(int*a,int low,int high){
int MaxSum = 0, MidSum, LeftSum, RightSum,i;
MidSum = 0;
if (low == high){ /*递归的终止条件*/
if (a[low] > 0)
return a[low];
else
return 0;
}
int mid = (low + high) / 2; //找到分的中点
LeftSum = Find_MaxSum3(a, low, mid); /*递归找到左边序列最大和*/
RightSum = Find_MaxSum3(a, mid + 1, high); /*递归找到右边序列最大子序列和*/
/*然后可以求中间跨越边界序列的最大和*/
int NewLeft = 0,Max_BorderLeft=0, NewRight = 0,Max_BorderRight=0;
for (i = mid; i >= low; i--){ /*向左扫描找到最大和*/
NewLeft += a[i];
if (NewLeft > Max_BorderLeft)
Max_BorderLeft = NewLeft;
}
for (i = mid + 1; i NewRight+=a[i];
if (NewRight >= Max_BorderRight)
Max_BorderRight = NewRight;
}
MidSum = Max_BorderRight + Max_BorderLeft;
return Max(LeftSum, MidSum, RightSum); /*返回治的结果*/
}
int Max(int a, int b, int c){    /*找出3者中最大的数*/
if ( a>= b&&a >= c)
return a;
if (b >= a&&b >= c)
return b;
if (c >= b&&c>=a)
return c;
}

我们来算一算这个算法时间复杂度:

T(1)=1;

T(n)=2T(n/2)+O(n);

=2kT(n/2k)+kO(n)=2kT(1)+kO(n)(其中n=2k)=n+nlogn=O(nlogn);

虽然这个算法已经非常好啦,但是并不是最快的算法。

算法四:

算法四叫做在线处理。意思为,每读入一个数据就进行及时处理,得到的结果是对于当前读入的数据都成立,即为在任何位置终止读入,算法都可以给出正确的解,边读边解。

#include
using namespace std;
int Find_MaxSum4(int*a, int n);
int main(){
int n, i;
int a[100];
cin >> n;
cout for (i = 0; i cin >> a[i];
cout return 0;
}
int Find_MaxSum4(int*a, int n){
int i, NewSum = 0, MaxSum = 0;
for (i = 0; i NewSum += a[i]; /*当前子序列和*/
if (MaxSum MaxSum = NewSum; /*更新最大子序列和*/
if (NewSum NewSum = 0;
}
return MaxSum;
}

这种算法是将读入的数据一个个扫描一遍,只有一个for循环,解决同一个问题算法差别大,在于一个窍门,让计算机记住一些关键的中间结果,避免重复计算。

 

www.bkjia.comtruehttp://www.bkjia.com/PHPjc/1044670.htmlTechArticle最大子序列和算法分析,子序列算法分析 问题描述:给定n个整数序列{a1,a2,...,an},求函数f(i,j)=max{0,a k }(k:连续的从i取到j); 问题即为求已连续...
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

在PHP API中說明JSON Web令牌(JWT)及其用例。 在PHP API中說明JSON Web令牌(JWT)及其用例。 Apr 05, 2025 am 12:04 AM

JWT是一種基於JSON的開放標準,用於在各方之間安全地傳輸信息,主要用於身份驗證和信息交換。 1.JWT由Header、Payload和Signature三部分組成。 2.JWT的工作原理包括生成JWT、驗證JWT和解析Payload三個步驟。 3.在PHP中使用JWT進行身份驗證時,可以生成和驗證JWT,並在高級用法中包含用戶角色和權限信息。 4.常見錯誤包括簽名驗證失敗、令牌過期和Payload過大,調試技巧包括使用調試工具和日誌記錄。 5.性能優化和最佳實踐包括使用合適的簽名算法、合理設置有效期、

會話如何劫持工作,如何在PHP中減輕它? 會話如何劫持工作,如何在PHP中減輕它? Apr 06, 2025 am 12:02 AM

會話劫持可以通過以下步驟實現:1.獲取會話ID,2.使用會話ID,3.保持會話活躍。在PHP中防範會話劫持的方法包括:1.使用session_regenerate_id()函數重新生成會話ID,2.通過數據庫存儲會話數據,3.確保所有會話數據通過HTTPS傳輸。

描述紮實的原則及其如何應用於PHP的開發。 描述紮實的原則及其如何應用於PHP的開發。 Apr 03, 2025 am 12:04 AM

SOLID原則在PHP開發中的應用包括:1.單一職責原則(SRP):每個類只負責一個功能。 2.開閉原則(OCP):通過擴展而非修改實現變化。 3.里氏替換原則(LSP):子類可替換基類而不影響程序正確性。 4.接口隔離原則(ISP):使用細粒度接口避免依賴不使用的方法。 5.依賴倒置原則(DIP):高低層次模塊都依賴於抽象,通過依賴注入實現。

在PHPStorm中如何進行CLI模式的調試? 在PHPStorm中如何進行CLI模式的調試? Apr 01, 2025 pm 02:57 PM

在PHPStorm中如何進行CLI模式的調試?在使用PHPStorm進行開發時,有時我們需要在命令行界面(CLI)模式下調試PHP�...

PHP 8.1中的枚舉(枚舉)是什麼? PHP 8.1中的枚舉(枚舉)是什麼? Apr 03, 2025 am 12:05 AM

PHP8.1中的枚舉功能通過定義命名常量增強了代碼的清晰度和類型安全性。 1)枚舉可以是整數、字符串或對象,提高了代碼可讀性和類型安全性。 2)枚舉基於類,支持面向對象特性,如遍歷和反射。 3)枚舉可用於比較和賦值,確保類型安全。 4)枚舉支持添加方法,實現複雜邏輯。 5)嚴格類型檢查和錯誤處理可避免常見錯誤。 6)枚舉減少魔法值,提升可維護性,但需注意性能優化。

如何在系統重啟後自動設置unixsocket的權限? 如何在系統重啟後自動設置unixsocket的權限? Mar 31, 2025 pm 11:54 PM

如何在系統重啟後自動設置unixsocket的權限每次系統重啟後,我們都需要執行以下命令來修改unixsocket的權限:sudo...

解釋PHP中的晚期靜態綁定(靜態::)。 解釋PHP中的晚期靜態綁定(靜態::)。 Apr 03, 2025 am 12:04 AM

靜態綁定(static::)在PHP中實現晚期靜態綁定(LSB),允許在靜態上下文中引用調用類而非定義類。 1)解析過程在運行時進行,2)在繼承關係中向上查找調用類,3)可能帶來性能開銷。

See all articles