Classes and Objects in PHP5_PHP教程
第 1 页 第一节 面向对象编程 [1]
第 2 页 第二节 对象模型 [2]
第 3 页 第三节 定义一个类 [3]
第 4 页 第四节 构造函数和析构函数 [4]
第 5 页 第五节 克隆 [5]
第 6 页 第六节 访问属性和方法 [6]
第 7 页 第七节 类的静态成员 [7]
第 8 页 第八节 访问方式 [8]
第 9 页 第九节 绑定 [9]
第 10 页 第十节 抽象方法和抽象类 [10]
第 11 页 第十一节 重载 [11]
第 12 页 第十二节 类的自动加载 [12]
第 13 页 第十三节 对象串行化 [13]
第 14 页 第十四节 命名空间 [14]
第 15 页 第十五节 Zend引擎的发展 [15]
![]() |
作者:Leon Atkinson 翻译:Haohappy 面向对象编程被设计来为大型软件项目提供解决方案,尤其是多人合作的项目. 当源代码增长到一万行甚至更多的时候,每一个更动都可能导致不希望的副作用. 这种情况发生于模块间结成秘密联盟的时候,就像第一次世界大战前的欧洲. |

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

本月初,來自MIT等機構的研究者提出了一種非常有潛力的MLP替代方法—KAN。 KAN在準確性和可解釋性方面表現優於MLP。而且它能以非常少的參數量勝過以更大參數量運行的MLP。例如,作者表示,他們用KAN以更小的網路和更高的自動化程度重現了DeepMind的結果。具體來說,DeepMind的MLP有大約300,000個參數,而KAN只有約200個參數。 KAN與MLP一樣具有強大的數學基礎,MLP基於通用逼近定理,而KAN基於Kolmogorov-Arnold表示定理。如下圖所示,KAN在邊上具

為了將大型語言模型(LLM)與人類的價值和意圖對齊,學習人類回饋至關重要,這能確保它們是有用的、誠實的和無害的。在對齊LLM方面,一種有效的方法是根據人類回饋的強化學習(RLHF)。儘管RLHF方法的結果很出色,但其中涉及了一些優化難題。其中涉及訓練一個獎勵模型,然後優化一個策略模型來最大化該獎勵。近段時間已有一些研究者探索了更簡單的離線演算法,其中之一就是直接偏好優化(DPO)。 DPO是透過參數化RLHF中的獎勵函數來直接根據偏好資料學習策略模型,這樣就無需顯示式的獎勵模型了。此方法簡單穩定

在软件技术的前沿,UIUC张令明组携手BigCode组织的研究者,近日公布了StarCoder2-15B-Instruct代码大模型。这一创新成果在代码生成任务取得了显著突破,成功超越CodeLlama-70B-Instruct,登上代码生成性能榜单之巅。StarCoder2-15B-Instruct的独特之处在于其纯自对齐策略,整个训练流程公开透明,且完全自主可控。该模型通过StarCoder2-15B生成了数千个指令,响应对StarCoder-15B基座模型进行微调,无需依赖昂贵的人工标注数

寫在前面&筆者的個人理解這篇論文致力於解決當前多模態大語言模型(MLLMs)在自動駕駛應用中存在的關鍵挑戰,即將MLLMs從2D理解擴展到3D空間的問題。由於自動駕駛車輛(AVs)需要針對3D環境做出準確的決策,這項擴展顯得格外重要。 3D空間理解對於AV來說至關重要,因為它直接影響車輛做出明智決策、預測未來狀態以及與環境安全互動的能力。目前的多模態大語言模型(如LLaVA-1.5)通常只能處理較低解析度的影像輸入(例如),這是由於視覺編碼器的分辨率限制,LLM序列長度的限制。然而,自動駕駛應用需

一、前言在过去的几年里,YOLOs由于其在计算成本和检测性能之间的有效平衡,已成为实时目标检测领域的主导范式。研究人员探索了YOLO的架构设计、优化目标、数据扩充策略等,取得了显著进展。同时,依赖非极大值抑制(NMS)进行后处理阻碍了YOLO的端到端部署,并对推理延迟产生不利影响。在YOLOs中,各种组件的设计缺乏全面彻底的检查,导致显著的计算冗余,限制了模型的能力。它提供了次优的效率,以及相对大的性能改进潜力。在这项工作中,目标是从后处理和模型架构两个方面进一步提高YOLO的性能效率边界。为此

目標偵測系統的標竿YOLO系列,再次獲得了重磅升級。自今年2月YOLOv9發布之後,YOLO(YouOnlyLookOnce)系列的接力棒傳到了清華大學研究人員的手上。上週末,YOLOv10推出的消息引發了AI界的關注。它被認為是電腦視覺領域的突破性框架,以其即時的端到端目標檢測能力而聞名,透過提供結合效率和準確性的強大解決方案,延續了YOLO系列的傳統。論文網址:https://arxiv.org/pdf/2405.14458專案網址:https://github.com/THU-MIG/yo

史丹佛李飛飛創業後,首次揭秘新概念「空間智能」。這不僅是她的創業方向,也是指引她的“北極星”,被她認為是“解決人工智慧難題的關鍵拼圖”。視覺化為洞察;看見成為理解;理解導致行動。在李飛飛15分鐘TED演講完整公開的基礎上,從數億年前生命進化的起源開始,到人類如何不滿足於自然賦予而發展人工智慧,直到下一步如何建構空間智能。 9年前,李飛飛在同一個舞台上,向世界介紹了剛誕生不久的ImageNet——這一輪深度學習爆發的起點之一。她本人也向網友自我安麗:如果把兩個影片都看了,你就能對過去10年的電腦視

對標OpenAI的法國AI獨角獸MistralAI有了新動作:首個代碼大模型Codestral誕生了。作為一個專為程式碼產生任務設計的開放式產生AI模型,Codestral透過共享指令和補全API端點幫助開發人員編寫並與程式碼互動。 Codestral精通程式碼和英語,因而可為軟體開發人員設計高階AI應用。 Codestral的參數規模為22B,遵循新的MistralAINon-ProductionLicense,可用於研究和測試目的,但禁止商用。目前,該模型可以在HuggingFace上下載。下載地址
